Page 1 :
Trigonometrical Ratios, Functions and Identities, , 31, , Measurement of Angles, Trigonometrical Ratios , Function and, Identities, , Basic Level, , 1., , Which of the following relation is correct, (c) sin 1 sin 1o, , (b) sin 1 sin 1o, , (a) sin 1o sin 1, , [WB JEE 1991], , (d), , , 180, , sin 1 sin 1o, , 2., , The radius of the circle whose arc of length 15 cm makes an angle of 3/4 radian at the centre is, 1, 1, (a) 10 cm, (b) 20 cm, (c) 11 cm, (d) 22 cm, 4, 2, , 3., , If tan , , 4, , then sin , 3, , [Orissa JEE 2002; IIT, , 1979], , (a), 4., , 4, 4, but not, 5, 5, , (b) , , (c), , 4, 4, but not , 5, 5, , (d) None of these, , If f (x ) cos 2 x sec 2 x , then, (b) f ( x ) 1, , (a) f (x ) 1, 5., , 4, 4, or, 5, 5, , If x sec tan , then x , , (d) f ( x ) 2, , (c) 2, , (d) 2 tan , , 1, , x, , (b) 2 sec , , (a) 1, , (c) 1 f ( x ) 2, , 6., , If A lies in the second quadrant and 3 tan A 4 0 then the value of 2 cot A 5 cos A sin A is equal to [Harayana CEE 199, 7, 23, 7, 53, (a), (b), (c), (d), 10, 10, 10, 10, , 7., , tan 1o tan 2o tan 3o tan 4 o.......... .. tan 89 o , (a) 1, (b) 0, The incorrect statement is, 1, (a) sin , (b) cos 1, 5, , 8., , 9., , 2 cos , , 2 sin , , (b), , 1, 2, , (d) tan 20, [WB JEE 1988], , (c) 2 cos , , (d) 2 cos , [MP PET 1994], , p 1, 2p, , 2p, , (b), , p 1, 2, , p 1, 2p, 2, , 2, , (c), , If sin cos 1, then sin cos , (a) 0, , 12., , (c) sec , , If sec tan p, then tan is equal to, (a), , 11., , (d) 1/2, , If cos sin 2 sin , then cos sin is equal to, (a), , 10., , [MP PET 1998, 2001], , (c) , , o, , o, , The value of cos 1 cos 2 cos 3 ..... cos 179, , 2p, p 1, 2, , [Karnataka CET 1998], , (b) 1, o, , (d), , (c) 2, o, , is, , (d) 1/2, [Karnataka CET 1999]
Page 2 :
32 Trigonometrical Ratios, Functions and, Identities, (a), 13., , (b) 0, , 2, , If tan , , 1, 5, , (b), , 19., , 20., , 21., , 22., , 24, 5, , (c), , 24, 5, , 5, , (d) , , 6, [EAMCET 1994], , (d), , 48, 5, [Karnataka CET 1998], , (c) sec . cosec , , (b) 1, , If tan , , (d) sin 2 cos 2 , , 20, , cos will be, 21, , 20, 41, , If cosec A cot A , (a), , 18., , 5, , (c), , (sec 2 1) (cosec 2 1) =, , (a) , 17., , (d) None of these, , 6, 6, 6, If A lies in the third quadrant and 3 tan A 4 0, then 5 sin 2 A 3 sin A 4 cos A , , (a) 0, 16., , 1, , (b) , , (a) 0, 15., , (c) 1, , and lies in the 1st quadrant, then cos is, , 1, , (a), 14., , 1, , 21, 22, , [MP PET 1994], , (b) , , 1, 21, , (c) , , 21, 29, , (d) , , 20, 21, , 11, , then tan A equal to, 2, , (b), , [Roorkee 1995], , 15, 16, , (c), , 44, 117, , 24, and lies in the second quadrant, then sec tan equal to, 25, (a) – 3, (b) – 5, (c) –7, 5 sin 3 cos , If 5 tan 4 , then, equal to, 5 sin 2 cos , (a) 0, (b) 1, (c) 1/6, 1 cos , equal to, sin 2 , 1, (a) 0, (b) 1, (c), 1 cos , , (d), , 117, 43, , If sin , , 1, simplifies to, tan A cot A, (a) sec A cosec A, (b) sin A cos A, , [MP PET 1997], , (d) – 9, [Karnataka CET 1998], , (d) 6, [Karnataka CET 1998], , (d), , 1, 1 cos , , The expression, , [SCRA 1999], , (c) tan 2 A, , 1, If for real values of x, cos x , then, x, (a) is an acute angle (b) is a right angle, , (d) sin 2 A, [MP PET 1996], , (c) is an obtuse angle, , (d) No, , value, , of, , , , is, , possible, 23., , If sin x + cosec x =2, then sinn x cosec n x is equal to, (a) 2, , (b) 2, , n, , [UPSEAT 2002], , (c) 2, , n 1, , (d) 2, , n2, , Advance Level, 24., , One root of the equation cos x x , , (a) 0, , 2, , 1, 0 lies in the interval, 2, , , (b) , 0 , 2 , , , (c) , , 2 , , 3 , (d) ,, 2 ,
Page 3 :
Trigonometrical Ratios, Functions and Identities, 25., , If, , (a), 26., , 1, y, , (c) 1 – y, , (d) 1 + y, , If sin sin 2 sin 3 1 , then cos 6 4 cos 4 8 cos 2 =, (b) 2, , (c) 1, , (d) None of these, , If and are angles in the 1 quadrant such that tan 1 / 7 and sin 1 / 10 . Then, st, , (a) 2 90 o, , 28., , [BIT Ranchi 1996], , (b) y, , (a) 4, 27., , 33, , {1 cos sin }, 2 sin , = y, then, =, 1 sin , {1 cos sin }, , (b) 2 60 o, , (c) 2 30 o, , (d) 2 45 o, , 1 sin 2 , cos 2 , 4 sin 4, 2, The value of lying between 0 and / 2 and satisfying the equation sin , 1 cos 2 , 4 sin 4 0, 2, 2, sin , cos , 1 4 sin 4, [IIT 1988; MNR 1992; Kurukshetra CEE 1998; DCE 1996], , 11, 7, (a), or, 24, 24, , 29., , If, , 3, , then, 4, , 5, (b), 24, , If for all real values of x ,, , If tan , , (a), 32., , [Pb. CET 2000, AMU 2001], , (c) 1 cot , , (b) 1 cot , , , (a) 0, , 3, , 31., , (d) None of these, , 24, , co sec 2 2 cot is equal to, , (a) 1 cot , 30., , (c), , , , 4x2 1, 64 x 96 x . sin 5, 2, , , , (d) 1 cot , , 1, , then lies in the interval, 32, , 2 , (b) ,, , 3 3 , , 2, , , , (c) , 3, , , , [Roorkee 1998], , 4 5 , ,, (d) , , 3 3 , , 3, , then the sum of the infinite series 1 2(1 cos ) 3(1 cos )2 4 (1 cos )3 .... is, 2, , 2, 3, , (b), , 3, 4, , (c), , 5, 2 2, , (d), , 5, 2, , Let A0 A1 A2 A3 A4 A5 be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of, the line segments A0 A1 , A0 A 2 and A 0 A 4 is, (a), , 3, 4, , (b) 3 3, , (c) 3, , (d), , 3 3, 2, , Trigonometrical Ratios of Allied Angles, , Basic Level, 33., , If x sin 45 o cos 2 60 o , , tan 2 60 o cosec 30 o, sec 45 o cot 2 30 o, , (a) 2, 34., , (b) 4, , (c) 8, , (d) 16, , (b) 0, , [MP PET 1990], , (c) 1, , (d) None of these, , sin( ) sin( )cosec , 2, , (a) 1, 36., , [Kerala (Engg.) 2002], , cos A sin(270 o A) sin(270 o A) cos(180 o A) , , (a) –1, 35., , , then x , , [EAMCET 1980], , (b) –1, , The value of sin 600 o cos 330 o cos 120 o sin 150 o is, , (c) sin , , (d) sin , [MP PET 1994]
Page 4 :
34 Trigonometrical Ratios, Functions and, Identities, (a) –1, , (b) 1, , 1, , (c), , 3, 2, , (d), , 2, , 37., , If A 130, , o, , and x sin A cos A, then, (b) x 0, , (a) x 0, 38., , [Karnataka CET 1989], , (d) x 0, , (c) x 0, , , , , , tan sin cos , 2, 2, , , , , , (a) 1, , [EAMCET 1981], , (b) 0, , 1, , (c), , (d) None of these, , 2, , 39., , sin 2 5 o sin 2 10 o sin 2 15 o ...... sin 2 85 o sin 2 90 o , , [Karnataka, , CET, , 1999,, , 1995], , (a) 7, 40., , (b) 8, , The value of, , cot 54, tan 36, , o, , is, , cot 70 o, , [Karnataka CET 1999], , (b) 3, , (c) 1, , (d) 0, , (c) 4, , (d) 8, , (c) –1, , (d) 2, , [Roorkee 1989], , (b) 2, , 25, , 24, , [Karnataka CET 2003], , (b) 1, , If tan( A B) 1, sec( A B) , , 2, 3, , (b), , , then the smallest positive value of B is, 19, , 24, , (c), , [Kerala (Engg.) 2002], , 13, , 24, , (d), , 11, , 24, , If x sin 130 o cos 80 o , y sin 80 o cos 130 o , z 1 xy , which one of the following is true, (a) x 0, y 0, z 0, , 47., , tan 20, , (d) – 4, , cos 1o cos 2o cos 3o ........ cos 180 o , , (a), 46., , , , (c) – 3, , o, , tan 9 o tan 27 o tan 63 o tan 81 o , , (a) 0, 45., , [MP PET 1997], , (b) – 2, o, , (a) 1/2, 44., , (d) 210 o ,330 o, , The value of tan( 945 o ) is, , (a) 2, 43., , 1, 2, [EAMCET 1994], , (c) 210 o , 240 o, , (b) 240 o , 300 o, , (a) –1, 42., , (d) 9, , Values of (0 360 o ) satisfying cosec 2 0 are, (a) 210 o , 300 o, , 41., , (c) 9, , (b) x 0, y 0,0 z 1, , [AMU 1999], , (d) x 0, y 0, 0 z 1, , (c) x 0, y 0, z 1, , If 22 o 3 0 , then (1 cos ) (1 cos 3)(1 cos 5)(1 cos 7) equals, (a) 1/8, , (b) 1/4, , (c), , [AMU 1999], , 1 2, , (d), , 2 2, , 2 1, 2 1, , Trigonometrical Ratios of Sum & Difference of Two Angles, Tranformation of Product into Sum &, Difference, Transformation of Sum & Difference into Product, , Basic Level, 48., , If A, B, C, D are the angles of a cyclic quadrilateral then cos A cos B cos C cos D , (a) 2(cos A cos C), , 49., , cos 17 o sin 17 o, cos 17 o sin 17 o, 1982)], , (b) 2(cos A cos B), , (c) 2(cos A cos D), , [IIT 1970], , (d) 0, [MP PET 1998 (Similar to EAMCET
Page 5 :
Trigonometrical Ratios, Functions and Identities, , 50., , cot(45 o ) cot(45 o ) , , (a) –1, 51., , tan 75 cot 75, , o, , [MNR 1982], , 3 cosec 20 sec 20 , (b), , 3, 2, , 1, 2, , (c) (1, 1), , (d) (1, 1), [MP PET 1993], , (c), , 1, 2, , (d) 0, [MNR 1975], , (c), , (d), , 2, , 1, , cos 2 48 o sin 2 12 o , 5 1, 4, , [MNR 1977], , 5 1, 8, , (b), , 3 1, 4, , (c), , 3 1, , (d), , 2 2, , sin 20 o sin 40 o sin 60 o sin 80 o , , [MNR 1976, 1981], , (b) 5 / 16, , (d) 5/16, , (c) 3/16, , cos 20 o cos 40 o cos 80 o , , cos, , [MP PET 1989], , (b) 1/4, , (c) 1/6, , (d) 1/8, , 2, 4, 8, 16 , cos, cos, cos, , 15, 15, 15, 15, , [IIT 1985], , (b) 1/4, , (c) 1/8, , (d) 1/16, , If x cos 10 cos 20 cos 40 , then the value of x is, o, , o, , 1, tan 10 o, 4, , o, , (b), , [Roorkee 1995], , 1, cot 10 o, 8, , (c), , 1, cosec 10 o, 8, , (d), , 1, sec 10 o, 8, , The value of cos 52 o cos 68 o cos 172 o is, , [MP PET 1997], , (b) 1, , 3, 2, , (c) 2, , (d), , 1, (c), 2, , 1, (d) , 2, , cos 40 o cos 80 o cos 160 o cos 240 o , , [EAMCET 1996], , (b) 1, , 1 cos 56 o cos 58 o cos 66 o , o, , o, , o, , [IIT 1964], o, , o, , (a) 2 cos 28 cos 29 cos 33 (b) 4 cos 28 cos 29 cos 33, 65., , (d) sin 15 cos 15 o, o, , o, , 2, , (a) 0, 64., , sin 40 o, , [MP PET 1992], , (b) 1, , (a) 0, 63., , 4 sin 20 o, , The value of cos 105 o sin 105 o is, , (a), 62., , (c) cos 15 sin 15, , (b) 1, , (a) 1/2, 61., , (d), , o, , (b) (1, 1), , (a) 1/2, 60., , (b) 2 sin 15, , o, , (c) 4, , [MP PET 1992], , (a) 3/16, 59., , sin 40, , o, , cos 2 cos 2 ( 120 o ) cos 2 ( 120 o ) is equal to, , (a), 58., , 2 sin 20 o, , If cos( A B) cos A cos B sin A sin B, then ( , ) , , (a), 57., , [IIT 1988], , sin 15 o cos 105 o , , (a), 56., , (d) None of these, , o, , (a) (1, 1), 55., , (c) 2 3, , (b) 2 3, o, , (a) 0, 54., , (d) , , (c) 1, , , , (a) 2, 53., , [MNR 1973], , (b) 0, , o, , (a) 2 3, 52., , 35, , (d) tan 73 o, , (c) tan 54 o, , (b) tan 56 o, , (a) tan 62 o, , cos 15 o , 1978], , o, , o, , o, , (c) 4 cos 28 cos 29 sin 33, , o, , (d) 2 cos 28 cos 29 sin 33 o, [MP, , o, , o, , PET, , 1998;, , MNR
Page 6 :
36 Trigonometrical Ratios, Functions and, Identities, 1 cos 30 o, 2, , (a), 66., , 1 cos 30 o, 2, , (b), , (c) , , 1 cos 30 o, 2, [EAMCET 1991], , (c) 0, , (d) None of these, , If cos cos 0 sin sin , then cos 2 cos 2 , (a) 2 sin( ), , 68., , (d) , , tan 5 x tan 3 x tan 2 x , sin 5 x sin 3 x sin 2 x, (a) tan 5 x tan 3 x tan 2 x (b), cos 5 x cos 3 x cos 2 x, , 67., , 1 cos 30 o, 2, , If tan A , , (b) 2 cos( ), , [EAMCET 1994], , (d) 2 cos( ), , (c) 2 sin( ), , 1, 1, and tan B , then A+B =, 3, 2, , [IIT 1967; UPSEAT 1987; MP PET, , 1989], , (a), 69., , , 4, , If cos( A B) , , 1, 5, , 5, 4, , (d) None of these, , (b) sin A sin B , , [MP PET 1997], , 2, 5, , (c) cos A cos B , , 1, 5, , (d) sin A sin B , , 1, 5, , sin 3 cos 3, 1 =, sin cos , , (b) 2 cos 2, , (a) 2 sin 2, 71., , (c), , 3, and tan A tan B 2, then, 5, , (a) cos A cos B , 70., , 3, 4, , (b), , (c) tan 2, , (d) cot 2, , tan 3 A tan 2 A tan A =, , [MNR 1982;, , Pb., , CET, , 1991], , 72., , 73., , (a) tan 3 A tan 2 A tan A, , (b) tan 3 A tan 2 A tan A, , (c) tan A tan 2 A tan 2 A tan 3 A tan 3 A tan A, , (d) None of these, , If cos A m cos B, then, (a) cot, , A B m 1, BA, , tan, 2, m 1, 2, , (b) tan, , (c) cot, , A B m 1, AB, , tan, 2, m 1, 2, , (d) None of these, , (b) 1, , [Kerala CEE 1993], , (c) –1/2, , (d) 1/8, , tan 100 o tan 125 o tan 100 o tan 125 o , (a) 0, , 75., , A B m 1, BA, , cot, 2, m 1, 2, , The value of cos 12 o cos 84 o cos 156 o cos 132 o is, (a) 1/2, , 74., , [UPSEAT 1990], , 1, 2, , (b), , If cos P , , [DCE 1999], , (c) –1, , (d) 1, , 1, 13, and cos Q , where P and Q both are acute angles. Then the value of P – Q is, 7, 14, [Orissa JEE 2002; Karnataka CET 2002], , (a) 30, 76., , o, , If sin A , , (b) 60, , 1, , and sin B , , 1, , (c) 45, , o, , (d) 75 o, , , where A and B are positive acute angles, then A B , , 5, , 10, (a) , , o, , (b), , , 2, , (c), , , 3, , (d), , , 4
Page 7 :
Trigonometrical Ratios, Functions and Identities, 77., , 37, , 3 , sin sin, , 10 10 , , [MNR 1984], , (a) 1/2, 78., , (b) –1/2, , AB, 0, 2, , (c) cos, , AB, 0, 2, , (d) cos( A B) 0, , (c) 1/8, , (d) 1/4, , If (1 tan )(1 tan ) 2 , then =, (b) 45o, , [Karnataka CET 1993], , (c) 60o, , (d) 75o, , , , , , cos 2 sin 2 , 6, 6, , , , , 1, cos 2, 2, , [EAMCET 2001], , (c) , , (b) 0, , 1, cos 2, 2, , (d), , 1, 2, , If sin sin 2 sin 3 sin and cos cos 2 cos 3 cos , then is equal to, (b) , , (c) 2, , [AMU 2001], , (d) / 6, , cos . sin( ) cos . sin( ) cos . sin( ) , , (a) 0, 85., , [EAMCET 1994], , [IIT 1982], , (b) 1/32, , (a) / 2, 84., , (d) 2, , sin 12 o sin 48 o sin 54 o , , (a), 83., , AB, 0, 2, , (b) sin, , (a) 30o, 82., , (c) 1/2, , If sin A sin B and cos A cos B , then, , (a) 1/16, 81., , [MNR 1979], , (b) 0, , (a) sin, 80., , (d) 1, , sin 50 o sin 70 o sin 10 o , , (a) 1, 79., , (c) 1/4, , (b) 1/2, , [EAMCET 2003], , (c) 1, , (d) 4 cos cos cos , , , , , , Given that cos , is equal to, 2 cos , , then tan tan, 2, 2, 2 , 2 , 1, 2, , (a), , (b), , 1, 3, , (c), , 1, 4, , (d), , 1, 8, , Advance Level, 86., , If sin A sin B C, cos A cos B D, then the value of sin( A B) , (a) CD, , 87., , (b), , If A B 225 o , then, (a) 1, , 88., , o, , –, , (c), , C 2 D2, 2 CD, , (d), , 2CD, C 2 D2, , cot A, cot B, ., , 1 cot A 1 cot B, , [MNR 1974], , (c) 0, , (d), , 1, 2, , 3, , [IIT 1974], , cos 10 o, , (a) 0, 89., , C 2 D2, , (b) –1, , 1, sin 10, , CD, , (b) 1, , (c) 2, , (d) 4, , sin 3 sin 5 sin 7 sin 9, , cos 3 cos 5 cos 7 cos 9, , (a) tan 3, , (b) cot 3, , [Roorkee 1973], , (c) tan 6, , (d) cot 6
Page 8 :
38 Trigonometrical Ratios, Functions and, Identities, 90., , If cos( ), cos and cos( ) are in H.P., then cos sec, , 91., , cos B sin B, cos B sin B, , (b), , n 1, n 1, , (b), , If 3 sin 5 sin , then, , tan, tan, , (a) 1, 94., , If, , , 2, , (a), 95., , (d) None of these, , (c), , cos A sin A, cos A sin A, , (d) None of these, , (c), , 1n, n 1, , (d), , tan( x y), is, tan( x y), , n 1, n 1, , 1n, 1n, , , 2, , , , =, , [EAMCET 1996], , 2, , (c) 3, , (d) 4, , 12, 15, 3, , the value of sin( ) is, , sin , and tan , 17, 5, 2, , 171, 221, , (b), , 21, 221, , (c), , 21, 221, , [Roorkee 2000], , (d), , 17, 221, , cos 2 76 o cos 2 16 o cos 76 o cos 16 o , 1, 4, , The value of cos , , (a), 97., , cos A sin A, cos A sin A, , (b) 2, , , , , (a) , 96., , [IIT 1997], , [Roorkee 1970; IIT 1966], , If sin 2 x n sin 2 y, then the value of, (a), , 93., , is equal to, , sin(B A) cos( B A), =, sin(B A) cos( B A), , (a), 92., , 2, , (c) 1 / 2, , (b) 3, , (a) 2, , , , (b), , , 12, , 3, 2, , cos 2, , , 4, , 1, 2, , cos 2, , (b), , [EAMCET 2002], , (c) 0, , (d), , 3, 4, , 5, is, 12, , 2, 3, , [Karnataka CET 2002], , (c), , 3 3, 2, , (d), , 2, 3 3, , If angle be divided into two parts such that the tangents of one part is K times the tangent of the other and, , is their difference, then sin =, (a), 98., , 99., , K 1, sin , K 1, , (b), , K 1, sin , K 1, , (c), , 2K 1, sin , 2K 1, , (d) None of these, , If tan , tan are the roots of the equation x 2 px q 0 (p 0) ,then, p, q 1, , (a) sin 2 ( ) p sin( ) cos( ) q cos 2 ( ) q, , (b) tan ( ) , , (c) cos( ) 1 q, , (d) sin( ) p, , tan equals the integral solution of the inequality 4 x 2 16 x 15 0 and cos equals to the slope of the, , If, , bisector of first quadrant, then sin( ) sin( ) is equal to, (a), , 100., , 3, 5, , 2 sin cos , , sin cos , , (b), , 3, 5, , (c), , 2, 5, , (d), , 4, 5, [AMU 1999]
Page 9 :
Trigonometrical Ratios, Functions and Identities, , (a) sec , 2 8, , , (b) cos , 8 2, , , (c) tan , 2 8, , 101. The sum S sin sin 2 ....... sin n , equals, (a) sin, , 1, 1, , (n 1) sin n / sin, 2, 2, 2, , (b) cos, , 1, 1, , (n 1) sin n / sin, 2, 2, 2, , (c) sin, , 1, 1, , (n 1) cos n / sin, 2, 2, 2, , (d) cos, , 1, 1, , (n 1) cos n / sin, 2, 2, 2, , 39, , , (d) cot , 2 2, , [AMU 2002], , Trigonometrical Ratios of Multiple and Sub-multiple of an Angle, , Basic Level, , 102., , 2 cos 2 2 sin 2 1, then , , (b) 30 o, , (a) 15o, , (c) 45 o, , (d) 60 o, , A, 5, 3, , then 32 sin cos A , 2, 2, 4, , 103. If cos A , (a), , [Karnataka CET 1998], , (b) 7, , 7, , [EAMCET 1982], , (c) 7, , (d) –7, , 104. cot x tan x , (b) 2 cot 2 x, , (a) cot 2 x, 105., , (c) 2 cot 2 x, , (d) cot 2 2 x, , (c) 1, , (d) None of these, , cos 2 A(3 4 cos 2 A)2 sin 2 A(3 4 sin 2 A)2 , , (a) cos 4 A, 106., , [MP PET 1986], , (b) sin 4 A, , 2 sin 4 cos( ) sin sin cos 2( ) =, 2, , (a) sin 2, 107. If tan A , , (b) cos 2 , , [UPSEAT 1993], , (c) cos 2, , (d) sin 2 , , 1 cos B, , then the value of tan 2 A in terms of tan B, sin B, , (a) tan 2 A tan B, , (b) tan 2 A tan 2 B, , 108. If tan A , , 1, 1, , tan B , then cos 2A =, 3, 2, , (a) sin B, , (b) sin 2B, , (c) tan 2 A tan 2 B 2 tan B, , (d) None of these, [Karnataka CET 1986, 89], , (c) sin 3B, , (d) None of these, , 109. If a cos 2 b sin 2 c has and as its solution, then the value of tan tan is, (a), 110., , ca, 2b, , (b), , (c), , ca, 2b, , (d), , b, ca, , 3 cos cos 3, is equal to, 3 sin sin 3, , (a) 1 cot 2 , 111., , 2b, ca, , [Haryana CEE 1998], , sin 2, , , 8, , sin 2, , [EAMCET 1996], , (b) cot 4 , , 3, 5, 7, sin 2, sin 2, =, 8, 8, 8, , (c) cot 3 , , (d) 2 cot , [Karnataka CET 1998]
Page 10 :
40 Trigonometrical Ratios, Functions and, Identities, (a) 1, , (b) –1, , 112. If k sin, , , 18, , . sin, , cos, , , , cos, , 7, , (b) 1/8, , (a), 115., , [IIT 1993; UPSEAT 1974], , (c) 1/16, , (d) None of these, , 2, 4, =, cos, 7, 7, , (a) 0, , [MP PET 1998], , (b), , 114. If cos , , (d) 2, , 5, 7, , then the numerical value of k is, . sin, 18, 18, , (a) 1/4, 113., , (c) 0, , 1, 2, , (c), , 1, 4, , (d) , , 1, 8, , 1, 1, a , then the value of cos 3 is, 2, a, , 1 3, 1, a , 8 , a3, , , , , , (b), , 3, 1, a , 2, a, , [MP PET 2001], , (c), , 1 3, 1, a , 2 , a3, , , , , , 2 sin A cos 3 A 2 sin3 A. cos A , , (d), , 1 3, 1, a , 3 , a3, , , , , , [Roorkee 1975, Kerala (Engg.), , 2002], , (a) sin 4 A, 116. If cos A , , (b), , (c), , 1, sin 4 A, 4, , (d) None of these, , 3, A 5A , ,then 32 sin sin, , 4, 2 2 , , (a) 7, 117., , 1, sin 4 A, 2, , (b) 8, , [DCE 1996], , (c) 11, , (d) None of these, , If is a root of 25 cos 2 5 cos 12 0, / 2 , then sin 2 is equal to, (a) 24/25, , (b) –24/25, , (c) 13/18, , [UPSEAT 2001], , (d) –13/18, , Advance Level, , 118., , tan 20 o tan 40 o tan 60 o tan 80 o , (a) 1, , (b) 2, , 119. If cos , , (c) 3, , (d), , 3 /2, , , 4, 3, , and cos , where and are positive acute angles, then cos, 5, 5, 2, , 7, , (a), , [IIT 1974], , (c), , 7, , 5 2, , 2, , 120. If cos( ) , , 7, , (b), , 5, , 4, 5, , , sin( ) , and , lie between 0 and , then tan 2 , 4, 5, 13, , [MP PET 1988], , (d), , 7, 2 5, [IIT, , 1979;, , EAMCET, , 2002], , (a), , 16, 63, , (b), , 56, 33, , (c), , 28, 33, , (d) None of these, , 2 , 4 , 1 1 1, , , 121. If x cos y cos , is equal to, z cos , , then the value of, 3, 3, x y z, , , , , , (a) 1, , (b) 2, , (c) 0, , 122. If a tan b, then a cos 2 b sin 2 =, , [IIT 1984], , (d) 3 cos , [EAMCET 1981, 82; MP PET, , 1996], , (a) a, , (b) b, , (c) – a, , (d) – b
Page 11 :
Trigonometrical Ratios, Functions and Identities, , 41, , 123. If 2 sec 2 tan cot , then one of the values of + is, (a), , , 4, , (b), , , 2, , (c) , , (d) 2, , xy, 124. If cos x cos y cos 0 and sin x sin y sin 0, then cot , , 2 , , (a) sin , 125. If sin 2 sin 2 , (a), , xy, (d) sin, , 2 , , (c) cot , , (b) cos , , [Karnataka CET 2001], , 3, 1, and cos 2 cos 2 , then cos 2 ( ) , 2, 2, , 3, 8, , (b), , 5, 8, , (c), , [MP PET 2000], , 3, 4, , (d), , 5, 4, , 126. If (sec tan )(sec tan )(sec tan ) tan tan tan , then (sec tan )(sec tan )(sec tan ) =, [Haryana CEE 1998], , (a) cot cot cot , 127. If cos 2 B , , (b) tan tan tan , , (c) cot cot cot , , (d) tan tan tan , , cos( A C), , then tan A, tan B, tan C are in, cos( A C), , (a) A.P, , (b) G.P, , (c) H.P, , (d) None of these, , , 3 , 5 , 7 , , 128. 1 cos 1 cos, 1 cos, 1 cos, , 8, 8, 8 , 8, , , , , (a), , 129. If, , (b), , 1, 4, , (c), , 1, 8, , (d), , 1, 16, , sin 4 A cos 4 A, 1, sin 8 A cos 8 A, , , , then the value of, is equal to, , a, b, ab, a3, b3, , (a), 130., , 1, 2, , [IIT 1994; WB JEE 1992], , 1, , (b), , (a b)3, , a3b 3, (a b)3, , (c), , a 2b 2, (a b)2, , [WB JEE 1971], , (d) None of these, , 2 3 4 6 is equal to, , (a) cot 7, , 1, 2, , o, , (b) sin 7, , [IIT 1966, 1975], , 1, 2, , o, , (c) sin 15 o, , (d) cos 15 o, , 131. If sin is the geometric mean between sin and cos , then cos 2 is equal to, , , (b) 2 cos 2 , 4, , , , , , (a) 2 sin 2 , 4, , , , , , (c) 2 cos 2 , 4, , , , , , (d) 2 sin 2 , 4, , , , 132. The value of k , for which (cos x sin x )2 k sin x cos x 1 0 is an identity, is, (a) –1, , (b) – 2, , (c) 0, , [Kerala (Engg.) 2001], , (d) 1, , n, , 133. If sin 3 x sin 3 x , , c, , m, , cos mx where c0 , c1, c2 ,......, cn are constants and cn 0, then the value of n is, , m 0, , (a) 15, 134. Let 0 x , , (b) 6, , , 4, , (c) 1, , (d) 0, , . Then sec 2 x tan 2 x =, , , , (a) tan x , 4, , , , , (b) tan x , 4, , , [IIT 1994], , , , (c) tan x , 4, , , , , (d) tan 2 x , 4,
Page 12 :
42 Trigonometrical Ratios, Functions and, Identities, 135. If x is A.M. of tan, , 9, , and tan, , 7, 5, , and y is A.M. of tan, and tan, , then, 18, 18, 9, , (b) x y, , (a) x y, 136. If cos 4 sec 2 ,, (a) A.P., 137. Let fn ( ) tan, , , , (c) 2x = y, , 1, 1, and sin 4 cosec 2 are in A.P. , then cos 8 sec 6 , and sin 8 cosec 6 are in, 2, 2, , (b) G.P., , , 2, , , (a) f 2 1, 16 , , (d) x = 2y, , (c) H.P., , (d) None of these, , (1 sec )(1 sec 2 )(1 sec 4 ) ……. (1 sec 2 n ) . Then, , [IIT Screening 1999; 2001], , , (c) f4 , 1, 64 , , , (b) f3 1, 32 , , (d) All of these, , 138. If A, B, C, D are the smallest positive angles in ascending order of magnitude which have their sines equal to, A, B, C, D, the positive quantity k, then the value of 4 sin 3 sin 2 sin sin, is equal to, 2, 2, 2, 2, (a) 2 1 k, , (b) 2 1 k, , (c) 2 k, , (d) None of these, , , 139. If , are different values of x satisfying a cos x b sin x c, then tan , =, 2 , , [Orissa JEE 2003;, , EAMCET 1986], , (a) a b, , (b) a b, , (c), , b, a, , (d), , a, b, , Maximum and Minimum value, , Basic Level, 140. The maximum value of a cos x b sin x is, (a) a b, , [MNR 1991; MP PET 1999], , (b) a b, , (c) | a | | b |, , (d) (a 2 b 2 )1 / 2, , 141. The minimum value of cos sin is, (a) 0, , [MNR 1976], , (b) 2, , (c) 1/2, , (d), , 2, , 142. The minimum value of 3 cos x 4 sin x 8 is, (a) 5, , (b) 9, , 143. If is an acute angle and sin , (a) 6 p 8, , [UPSEAT 1991], , (c) 2, , (d) 3, , p 6, , then p must satisfy, 8p, , (c) 3 p 4, , (b) 6 p 7, , (d) 4 p 7, , Advance Level, , 144. Maximum value of cos 2 x cos 2 y cos 2 z is, (a) 0, , (b) 1, , , 145. Let n be a positive integer such that sin n, 2, , (c) 3, , , cos n, , 2, , n, , , then, , 2, , , (d) 2
Page 13 :
Trigonometrical Ratios, Functions and Identities, (a) 6 n 8, , 146. If 0, , then, 2, , x2 x , , (a) 2 tan , 147. The, , tan 2 , x2 x, , is always greater than or equal to, , (b) 1, , maximum, , value, , [IIT Screening 2003], , (d) sec 2 , , (c) 2, , (cos 1 ).(cos 2 ).....(cos n ) ,, , of, , under, , the, , restrictions,, , 0 1 , 2 ...... n , , (cot 1 ).(cot 2 )........( cot n ) 1 is, (a), , 1, 2n, , (b), , 2, , , 2, , and, , [IIT Screening 2001], , 1, , (c), , 2n, , 1, 2n, , (d) 1, , 148. Let f ( ) = sin (sin sin 3 ) . Then, (a), , 43, , (d) 4 n 8, , (c) 4 n 8, , (b) 4 n 8, , [IIT Screening 2000], , f ( ) 0 only when 0, , (b) f ( ) 0 only when 0, , (c) f ( ) 0 for all real , , (d) None of these, , 149. The minimum value of 2sin x 2cos x is, , , (a) 1, , (b) 2, , (c) 2, , 1, , 1, , 1, , 2, , 2, , (d) 2, , Conditional Trigonometrical Identities, , Basic Level, , 150. If A B C , then, (a) 0, 151., , tan A tan B tan C, , tan A. tan B. tan C, , [EAMCET 1989], , (b) 2, , (c) 1, , (d) –1, , If A B C and cos A cos B cos C, then tan B tan C is equal to, (a), , 1, 2, , (b) 2, , (c) 1, , [AMU 2001], , (d) , , 1, 2, , Advance Level, , 152. If , then sin 2 sin 2 sin 2 , (a) 2 sin sin cos , 153. If A B C , (a) 0, , (b) 2 cos cos cos , , [IIT 1980], , (c) 2 sin sin sin , , (d) None of these, , 3, , then cos 2 A cos 2B cos 2C 4 sin A sin B sin C , 2, , (b) 1, , (c) 2, , [EAMCET 2003; 1989], , (d) 3, , 154. If A, B, C are the angles of a triangle, then sin 2 A sin 2 B sin 2 C 2 cos A cos B cos C =, (a) 1, , (b) 2, , (c) 3, , [Karnataka CET 1989], , (d) 4
Page 14 :
44 Trigonometrical Ratios, Functions and, Identities, 155. If , , , 2, , and , then tan equals, , (a) 2(tan tan ), , [IIT Screening 2001], , (c) tan 2 tan , , (b) tan tan , , 156. Let A, B and C are the angles of a plain triangle and tan, (a) 7/9, , (b) 2/9, , (d) 2 tan tan , , A 1, B 2, C, , tan . Then tan, is equal to, 2, 3, 2, 3, 2, , (c) 1/3, , (d) 2/3, , ***, , 44, , Trigonometrical, Identities, , Ratios,, , Functions, , Assignment (Basic & Advance Level), , and, , 1, , 2, , 3, , 4, , 5, , 6, , 7, , 8, , 9, , 10, , 11, , 12, , 13, , 14, , 15, , 16, , 17, , 18, , 19, , 20, , b, , b, , b, , d, , b, , d, , a, , c, , a, , b, , a, , b, , c, , a, , b, , c, , c, , c, , c, , c, , 21, , 22, , 23, , 24, , 25, , 26, , 27, , 28, , 29, , 30, , 31, , 32, , 33, , 34, , 35, , 36, , 37, , 38, , 39, , 40, , b, , d, , a, , a, , b, , a, , d, , a, , c, , b,d, , d, , c, , c, , b, , b, , a, , a, , d, , d, , d, , 41, , 42, , 43, , 44, , 45, , 46, , 47, , 48, , 49, , 50, , 51, , 52, , 53, , 54, , 55, , 56, , 57, , 58, , 59, , 60, , a, , a, , c, , c, , b, , b, , a, , d, , a, , c, , a, , c, , a, , c, , a, , d, , b, , c, , d, , d, , 61, , 62, , 63, , 64, , 65, , 66, , 67, , 68, , 69, , 70, , 71, , 72, , 73, , 74, , 75, , 76, , 77, , 78, , 79, , 80, , b, , a, , d, , c, , a, , a, , b, , b, , a, , a, , a, , a, , c, , d, , b, , d, , c, , b, , a, , c
Page 15 :
Trigonometrical Ratios, Functions and Identities, , 45, 81, , 82, , 83, , 84, , 85, , 86, , 87, , 88, , 89, , 90, , 91, , 92, , 93, , 94, , 95, , 96, , 97, , 98, , 99, , 100, , b, , a, , a, , a, , b, , d, , d, , d, , c, , a, , b, , a, , d, , d, , d, , a, , a, , a,, , d, , c, , b, 101, , 102, , 103, , 104, , 105, , 106, , 107, , 108, , 109, , 110, , 111, , 112, , 113, , 114, , 115, , 116, , 117, , 118, , 119, , 120, , a, , b, , b, , c, , c, , c, , a, , b, , b, , c, , d, , b, , d, , c, , b, , c, , b, , c, , b, , b, , 121, , 122, , 123, , 124, , 125, , 126, , 127, , 128, , 129, , 130, , 131, , 132, , 133, , 134, , 135, , 136, , 137, , 138, , 139, , 140, , c, , a, , a, , c, , b, , a, , b, , c, , a, , a, , a, c, , b, , b, , b, , c, , a, , d, , b, , c, , d, , 141, , 142, , 143, , 144, , 145, , 146, , 147, , 148, , 149, , 150, , 151, , 152, , 153, , 154, , 155, , 156, , b, , d, , b, , d, , b, , a, , a, , c, , d, , c, , b, , a, , b, , b, , c, , a