Page 1 :
1., , Find the areas and, , perimeters of the, having following length and breadth.rectangles, (a) Length 15, 11 cm, cn, Breadth, =, , (7), , Length =1.92 m, Breadth, , =, , 0.66, , m., , (4), , OR, , Find the volume, surface area, lateral surface, , area and, , diagonal of given solids., 9 mm (i), , S, 3. The, , breadth, , 9 mm, , rectangle is 12.6, cm2., if its a r e a is 37.8, , length of, , a, , cm., , Find its, , (2), , OR, in the ratio of, , 12 mm, , (4), , of a cuboid are, The dimensions, surface area is 88, 1:2:3 and its total, the cuboid., the dimensions of, , m2. Find, , 4. The area of rectangular field is 7,200 sq.m., , width is 90 m, then find its length., , 2. Calculate, , the, , areas, , (2), , Ifits, , (2), , and perimeters of the, , following sides., (i) side = 1.1 cm., , squares having, S i d e 0.5 cm, , m, , (4), , 5. The, , area, , side., , of a square is 16,900 m?. Calculateits, (2)
Page 2 :
8. A floor which is 20 m long and 8 m broad, is to, , OR, The, , area, , of an, , equilateral triangle is 36/3 sq. m., , Find the length of its sides., , (2), , be paved with square tiles with side 0.4 m Find, , the total number of tiles required., OR, , Find the area of the given polygon, , 1.om, , 11, cm, 10 cm, , 11 11 cmcm, , c m, , B, , 6., , (3, , 24 cm, , The length and breadth of a, rectangle are in, the ratio 3:2. Find its sides,, if its perimeter is, 2,500 cm., (2), OR, Find the area of a right-angled, triangle whose, one side is 5 cm and, hypotenuse is 13 cm. (2), , 9. Find the, , perimeter of a square field whose area, , i s14,400 m., 7. The side of, , square is 32, , Calculate its, perimeter. Also, the dimensions of a rectangle, are 8 m x 4 m. Calculate its perimeter and which, a, , m., , A, , figure has the larger perimeter?, , (3), , 3, , (3)
Page 3 :
15. (A), , 1000 cm3 = 11, , 2, , =, , 2, , cm=, , 1, , Area, , =, , Base, , =, , 96, , x 297 = 594 mm2, , = 2(1 x h +b x h), 2, , (12 x 9 +9, (108 +81), , x, x, , = 2 x 189, , cmn, , 2304, , =, , 2, , =, , Height, , x, , 24, , x, , 108), , Lateral surface area, , 10, , 10000cm3= 10000, = 10., 1000, 16. (A), , (108 +81, , x, , 9), , x, , 378 mm2, , Diagonal = V2 +b2 +h2, , WORKSHEET-69, 122 +92 +92, , 1. ( ) = 15 cm, b = 11 cm, , Area of rectangle =lxb= 15 x 11, , V144 +81+81, , = 165 cm2, , Perimeter of the, , = 3 3 4 mm., , rectangle, =, , 2, , x, , =, , 2, , x, , (i) The given solid is a cube., , (l b), (15 + 11), +, , 2x, , Edge = a, Volume = a3, , 26 =52 cm., , Surface, , (ii)I = 1.92 m, b = 0.66 m, , 1.2672 m2., rectangle, 2, , x, , 2, , x, , =, , 2, , (l, , 2. (i), , Area = a = 0.5 x 0.5, , b), , +, , = 0.25 cm2, , 2.58, , =, , 5.16, , and, , m., , perimeter = 4 x a = 4 x 0.5, , 2.0 cm., , () The given solid, , is, , cuboid., , a, , (i), , Its, , measurements are given below:, , Side of square, , 972 mm*, area, , 2, , =, , 2, , x, , (lb, , x, , 1.1, , 4.4 cm., , =lxbxh= 12 x9x 9, x, , 1.1, , perimeter = 4 x b = 4 x 1.1, , and, , Height h = 9 mm., , =, , =, , 1.21 cm2, , Breadth b =9 mmn,, , Surface, , b =1.1 cm., , Area, , Length= 12 mm,, Volume, , 6a, , Side of square = a = 0.5 cm, , OR, , V, , =, , Diagonal= av3., , (1.92 +0.66), , x, , area, , Lateral surface area = 402, , Area of rectangle = l x b = 1.92 x 0.66, , Perimeter of the, , 306, , +, , I= 12.6 cm, A, , A=lx b or, bh, , (12x, , +, , hl), , 9 +9, , x, , 9, , +9x 12), , AE NIS|uRATON, , 3., , b=, = 3 cm., , =, , 37.8, , cm2,, , b, , =, , 37.8= 12.6 x b, , ?
Page 4 :
In right triangle ADC,, , OR, , Let constant of ratio be x., , (: CD 5, , Then, I= 2x, b = x, h = 3x, , Total surface area= 2x (lb + blh + hl), 2, , x (2x x* +*x3x, , or, , 3 x x 2x), , =2x (22 +3x2+ 6x2), , area=, , Now,, , xaxh= 36/3, , = 222, , This is given to be 88 m2., , 4, , Or, , l= 2x = 2x 2 = 4,, , or, , 22x, , 88, , xax=363, , or, , a236V3x2x2, , 3, , x= 2., , b=* = 2, c = 3x = 3 x 2, , 6., , Therefore, the dimensions are 2 m, 4 m,, 6 m., , a, , 36 x4, , Thus, length of side is 12 m., , 6.Let, , 3x and b, , 2, , =, , perimeter = 2(l + b), , Then,, 4. Length of a rectangle = Area, , 2(3x+2x) = 10x, , Width, , 7200 m2, , or a = 12, , But this is given to be 2500 cmn, , 90 m, , 10x = 2500 cm, , = 80 m., , Thus, length of the rectangular field is, , This gives,, , l, , 801m., and, , 5. Side of a square = VArea, , =, , r 250, , 3x, , 3, , =, , 250, , x, , 750, , =, , b = 2x = 2 x 250, , cm, , 500 cm., , OR, , =/16900 /169 x100, = 13 x13x10x10, , Base, , =, , 1 3 x 10, =, , 130, , Hypotenuse Side, 13-52 V169-25, -, , =, , V144 =, , V12x12= 12 cm, , Thus, side of the square is 130 m., , Now,, , OR, , area, , Let length of side = a and height = h, , The given triangle, is, , ABC., , Draw, , perpendicular AD, on BC., , A, , 7. Side of square, ., , 2, , Base x Height, , x, , 12 x 5 = 30 cm, , x, , =, , =, , 32m, , Perimeter of the square, 4, , x Side = 4 x 32, , = 128 m, , 26, , MATIAIEMATIICs-VIll
Page 5 :
For rectangle,, Perimeter, , l= 8 m and b = 4 m, , In right AAMF,, , of the rectangle, 2, , AM2+ MF2= AF2, , x (l+b, , = 2 x (8 + 4) = 24 m., , (Pythagoras property), or, , AM2 + 52, , 112, , AM2, , 112, , Clearly, the square has larger perimeter, than that of the rectangle., 8. The floor is in the, , shape, , of, , a, , = 121 2 5 = 96, , rectangle., , F o r the floor, I = 20m and b = 8m, , 52, , -, , AM = 4 6 cm, , or, , Area of the floor = Ix b = 20 x 8, , Now, area of AABF, , = 160 m2, , Side of a tile = 0.4 m = m = 2 m, , AMx BF, , -, , 4 6 x10, = 20/6 cm2, , Area of a tile = Side2 =, , Since AABF and ACDE, , 20V6 cm2, , Now, the required number of tiles, Area of the floor, , So,, , Area of a tile, 160, , area, , of the, , OR, Area of rectangle BCEF = BC x BF, 2 4 x 10, , 240, , AB = AF = 11 cmn, , 1 cm, , +, , 240, , 40/6, , rectangle, Area of ACDE, , +, , 20 6, , =, , 40(6, , +, , V) cm2, , Then its area = a2, But the area is given to be 14400 m2, , a2 14400, , AABF is an isosceles triangle with, , M, , Area of, , 9. Let the side of a square be a., , = 240 cm2, , 5 cm, , +, , BCEF+, , = 160 x, , 4 0 x 25 = 1000., , cm, , givern polynomial, , Area of AABF, , =, , 20V6+, , or, , a2 144 x 100, , or, , a2= (12, , x, , 12 x 12 x 10 x 10, , 10)2, , a = 12 x 10, , 120 m., , D, , 5cm, , Cm, , congruent, , Area of ACDE = Area of AABF, , 25 m, , --, , are, , 1, , 1, c m, , Now,, , 24 cm, , BM = MF =cm = 5 cm, MFNsMenTinl, , perimeter =4 x a = 4 x 1200, 480, , Thus, the perimeter of the square is, 4801m.