Page 3 :
Introduction, Factors of natural numbers, e.g. 90 = 2 x 3 x 3 x 5, Factors of algebraic expressions, Terms are formed as product of factors., e.g. 5xy = 5 x x x y, 10x(x+2)(y+3)=2x5xxx(x+2)x(y+3)
Page 4 :
Method of common factors, , • We write each term as a product of, irreducible factors. Then take out the, common factors of the terms and write the, remaining factors to get the desired factor, form., • E.g. 5ab+10a, (5xaxb)+(10xa), (5axb) + (5ax2), 5a( b+2 ) (desired factor form)
Page 6 :
Let us solve some examples
Page 8 :
Factorise, 2, 2, 2, a bc + ab c + abc, Take the common factors, abc ( a + b +c ), a x b x c x (a + b + c)
Page 10 :
Factorisation using identities, , • Observe the expression., , • If it has a form that fits the right hand side of one of the identities ,, then the expression corresponding to the left hand side of the, identity gives the desired factorisation., • (a+b)2 = a2+2ab+b2, • (a-b)2 = a2 -2ab+b2, • (a2-b2) = (a+b)(a-b)
Page 13 :
Factors of the form (x+a)(x+b), • In general , for factorising an algebraic expression of the, type x2+px+q , we find two factors a and b of q (i.e. the, constant term) such that, ab = q, a+b = p
Page 14 :
a 2a b b, 4, , 2 2, , 4, , (a ) 2a b (b ), 2 2, , 2 2, , (a b ), 2, , 2 2, , 2 2
Page 15 :
4x 8x 4, 2, , 4( x 2 x 1), 2, , 4( x x x 1), 2, , 4[ x( x 1) 1( x 1)], 4( x 1)( x 1), 4( x 1), , 2
Page 16 :
p 6p 8, 2, , p 4p 2p 8, p ( p 4) 2( p 4), 2, , ( p 2)( p 4)
Page 17 :
a 10a 21, 2, , a 7 a 3a 21, 2, , a (a 7) 3( a 7), (a 7)( a 3)
Page 18 :
Division of algebraic expressions, • Division of monomial by another monomial, • Division of polynomial by a monomial, • Division of polynomial by polynomial
Page 19 :
Division of monomial by another, monomial, 6 x3 2 x, Now let us write the irreducible factor forms, , 6 x3 2 3 x x x, 2x 2 x, 6 x 3 2 x (3 x x ), (2 x ) (3 x 2 ), 6 x3 2 x 3x 2
Page 20 :
Division of polynomial by a, monomial, , (5 x 6 x ) 3 x, x (5 x 6), 3 x, (5 x 6), 3, 2
Page 21 :
( x 2 x 3x) 2 x, 3, , 2, , x( x 2 x 3), 2 x, 2, ( x 2 x 3), 2, 2
Page 22 :
Division of polynomial by, polynomial, ( y 7 y 10) ( y 5), 2, , ( y 5 y 2 y 10), ( y 5), [ y ( y 5) 2( y 5)], ( y 5), ( y 5)( y 2), ( y 5), ( y 2), 2
Page 23 :
( m 14m 32) ( m 2), 2, , ( m 16m 2m 32), ( m 2), [ m( m 16) 2( m 16)], ( m 2), ( m 16)( m 2), ( m 2), ( m 16), 2
Page 24 :
CONCEPT, MAP