Page 1 :
Unit 1, , , , Sr, no, , Question, , Answ, er, , Difficult, y, , , , 12 3, 0-1 2), 5 6 3, , Determinant of Matrices A = is, , , , , , a) 5, b) 10, c) 20, d) -15, , 2, , , , NI, a, , Cofactor A,, of MatrixA = |0 -1 2lis, , a) 12, b) -12, c) -15, d) 15, , , , oo, , Cofactor A,, of Matrix A=, , , , , , o, N wo, , a) 9, b) -9, c) 3, d) -3, , , , Rank of every non zero matrix is, a) =1, b) >1, c) 21, d) <1, , , , In Square Matrix (n x n) if Determinant is Non Zero then Rank of, matrix is Equal to, , a) 0, , b) 1, , c) <n, , d) on, , , , A 1 2, Rank of the matrix A = [! 4, a) 1, b) 2, c) Cannot determined, d) Oand1 both, , , , , , , , 72 3, 0-1 23 4, , Rank of the matrix A =, , , , , , &, wn ao, , , , , , , , , , (, Edit with WPS Office
Page 2 :
TIT 4, sa uf2 2 -2 2, Rank of the Matrix A = 333 4, 110-1707, , a), b), , &, RwWNA, , qd), , , , 2-2 3, 111, 13-1, , The characteristic Equation for A = is, , , , , , a) +20? +5 +6=0, b) A°+2A7+5\-6=0, c) \°-24° + 5A-6=0, d) A°-24?-5A+6=0, , , , 10, , Characteristic Vector for, A = 1, for A =, , 2-2 3, 111, 13-1, , , , , , a), , ® oo 2 LON SS SS, , , , 11, , 8 6 2, -6 7 -Alis, 2 4 3, , Characteristic Value for, A=, , , , , , a) 1,2,3, b) 0,3,15, c) 1,2,2, d) 1-2-2, , , , , , 12, , , , 8 8 2, 4 3 -2lis, 3-41, , Characteristic Vector for,A = 2 for Matrix A =, , , , , , a), , @ > SNSN GD, , , , , , | Edit with WPS Office
Page 3 :
Zy, , , , , , 1, , , , 13, , 2-17 1, 12 41, 1-12, , Value of A? For matrix A = is, , , , , , 4 6, , , , &, OB GOoON, & oo, oabh, , &, 30 ch oF, cn, , , , 14, , 8 -6 2, 6 7-1, 2 -4 3, , Cayley- Hamilton theorem equation is For A =, , , , , , a) A°+18A°>+45A=0, b) A°®-18A?+ 45A =0, c) A°+18A’-45A =0, d) A®-18A7-45A = 0, , , , 15, , IF AA’=I Then A is called, a) Orthogonal Matrix, b) Symmetric Matrix, c) Singular Matrix, d) Transpose of matrix, , , , 16, , For Orthogonal Matrix A’ =, , (>>, , A, -jA’, , Boece, , , , 17, , 2 4 6, 1 2 3lis, 3 6 9, , Characteristic Value for Matrix, A =, , , , , , a) 1,1,2, b) 13,4, c) 0,0,13, d) 5,0,2, , , , , , 18, , , , Given equation of system is ,, X+y+Z= 6; 2x-3y + z= 11; 3x-2y + 6z=18, a) Consistent with unique solution, b) Consistent with Infinite solution, c) Inconsistent, , , , (Se, AY’ Edit with WPS Office
Page 4 :
d) Can't determin, , , , , , , , , , , , , , , , , , , , , , 19 Unique solution for equation is,, X-y-Z=2; X+2y+zZ=2;4x-7y-5z=2, a) x=0; y=3;z=5, b) x=0; y=4, z=-6, c) x=2; y=3; z=6, d) x=1; y=2;z=3, 20 | The system of equation is consistent if, a) Rank (A) = Rank (AIB), b) Rank (A) > Rank (AIB), c) Rank (A) < Rank (AIB), d) Rank (A) < Rank (AIB), 21 | The fourth roots of unity are:, a) 1, -1,i, -i, b) i, -i, c) 1,i, d) 1,-1, 22 | The argument of the number -1 + iis, a) 45°, b) 180°, c) 90°, d) 135°, 23 oo 2, aT (cos 36-isin 36)3, The simplified form fos 26+isin 26)”, a) 1, b) 2, c) cos 98-isin 96, d) cos 36 + isin 30, as The modulus value of z = oH., 5+5i, 7, a) kf, b) 2, c) 3, d) 1, 25 | The reciprocal of the number i is, a) 1, b) -1, c) |, d) -i, 26 | The conjugate of z = 1 + 2i, a) 2-i, b) 1-2i, c) 3, d) 4, 27_ | The value of (1+i)® + (1-i)®, , , , , , , , | Edit with WPS Office
Page 5 :
a) 32, b) 44, ce) 5, d) 1-i, , , , 28, , IfZ, = 2 +41& Z,= 7-SithenZ,-Z, =, a) 5+9i, b) -5+9i, c) -5-9i, d) 5-9, , , , 29, , FZ, = 2 +418 Z,= 3-ithenZ,Z, =, a) 10+ 10i, b) -10 + 10i, c) -10-10i, d) 10-103, , , , 30, , If xtiy = 7+3i then x & yis, a) x=3&y=4, b) x=38&y=3, c) x=7&y=3, d) x=7&y=7, , , , 31, , The eigen values are roots of, a) Adjoint matrix, b) Rank of matrix, c) Polynomial, d) The characteristic equation, , , , 32, , if Z = 1-i then Polar form will be, , To. Tt, a) /2|cos qsin 3), , To. Tt, b) /2|cos qrsin n), sn], , 3m,, c) Aaleos yrsin vv, , Sm... om, d) Pleos yrsin =), , , , 33, , if Z = -/3-i then Polar form will be, 2n, , d) 2e3, , , , , , 34, , , , The argument of the number ns is, , a) 45°, b) 180°, c) 90°, d) 135°, , , , , , (, Edit with WPS Office