Page 1 :
CBSE Board, Class XII Mathematics, Sample Paper - 1, Term 2 – 2021-22, Time: 2 hours, , Total Marks: 40, , General Instructions:, 1. This question paper contains three sections – A, B and C. Each part is, compulsory., 2. Section - A has 6 short answer type (SA1) questions of 2 marks each, 3. Section – B has 4 short answer type (SA2) questions of 3 marks each., 4. Section - C has 4 long answer type questions (LA) of 4 marks each., 5. There is an internal choice in some of the questions., 6. Q14 is a case-based problem having 2 sub parts of 2 marks each., Section A, Q1 – Q6 are of 2 marks each., 1. Integrate, , cos2x, , sin2 x cos2 xdx, , OR, 8, , Integrate, , 3, , x 1, , 3 x 1 3 11 x dx, , 2, , 2. Check whether the differential equation, , , , , , 2yex /y dx y 2x ex /y dy 0, , is, , homogeneous., , 3. Write the direction cosines of the vectors 2i j 5k., 4. Find the angle between the line, , x 1 y z 3, , and the plane 10x + 2y – 11z, 2, 3, 6, , =3, , 5. Bag A contains 3 white and 4 red balls, and bag A contains 6 white and 3 red, balls. An unbiased coin, twice as likely to come up heads as tails, is tossed once., If it shows head, a ball drawn from bag A, otherwise, from bag B. Given that a, white ball was drawn, what is the probability that the coin came up tail?
Page 3 :
Section C, Q11 – Q14 are of 4 marks each, , 11. Integrate, , 3x 2, , x2 x 1dx, , 12. Using integration, find the area between the circle x2 + y2 = 16 and the parabola, y2 = 6x., OR, Find the area of the smaller region bounded by the ellipse, , x2, , y2, , 2, , 2, , a, , b, , 1 and the line, , x, a, , y, b, , 1, , 13. Find the vector equation of the plane passing through three points with position, vector i, , j 2k,2i j k and i 2j k. Also, find the coordinates of the point of, , intersection of this plane and the line r, , 3i, , j k, , 2i 2j k ., , 14. Case Study, Four cards are drawn successively with replacement from a well shuffled deck of, 52 cards. What is the probability that, i. All the four cards are spades?, ii. Only 3 cards are spades?
Page 4 :
Solution, Section A, cos2x, , 1. I , , sin2 x cos2 x, , dx, , cos2 x sin2 x, , I, , dx, sin2 x cos2 x, 1, 1 , I , , dx, sin2 x cos2 x , , , , , , I cosec2x sec2 x dx, , I cot x tan x c, OR, 8, , I, , 3, , x 1, , 3, , 3, 2 x 1 11 x, , 8, , I, , 3, , dx …(i), , 10 x 1, , 3, 2 10 x 1 11 10 x , 3, , 8, , I, , 2, , 3, 3, , 11 x, , 11 x 3 1 x, , dx …(ii), , Adding (i) and (ii), 83, , 2I , , x 1 3 11 x, , 3, 3, 2 x 1 11 x, 8, , I, , 1, dx, 2, 2, , I, , 1 8, x, 2 2, , I=3, , dx, , dx
Page 5 :
2. Given DE is 2yex/y dx, , dx, dy, , 2xe, , x, y, , y, , 2ye, , y – 2x ex/y dy, , 0, , ... 1, , x, y, , Let, , F x,y, , 2xe, , x, y, , y, , 2ye, , x, y, , Then,, , 2xe, F, , x, y, , y, o, , x, y, 2ye, , x, y, , F x,y, , Thus, F(x, y) is a homogeneous function of degree zero., , 3. Let a 2i j 5k, then, a (2)2 (1)2 (5)2, a , , 4 1 25, , a 30, Now,a , , a, a, , , , 2i j 5k, 30, , , , 2, 30, , i, , 1, 30, , j, , 5, 30, , k, , Thus, the direction cosines of the vector 2i j 5k are , , 2, 30, , ,, , 1, 30, , and , , 5, 30, , 4. Let be the angle between the line and plane and θ be the angle between the, line and normal to plane, = (90 – θ), Let b be vector parallel to line, ˆ, ˆ 6k, b 2iˆ 3j, Let n̂ be normal to plane, , n̂ 10iˆ 2jˆ 11kˆ, , .
Page 6 :
cos , , 2iˆ 3jˆ 6kˆ .10iˆ 2jˆ 11kˆ , 22 32 62, , cos 90 , sin , , 102 22 112, , 40, 8, , 7 15 21, , 8, 8 , sin 1 , 21, 21 , , 5., Let W be the white ball was drawn and T be the tail come up., , T PT W , P , P W , W, 1 6, , 2 9, , 1 6 1 3, , 2 9 2 7, 1, 3, 1 3, , 3 14, 14, , 17, , 6. Let X be the number of coins showing heads., Let X be a binomial variate with parameter n = 150 and p., P(X = 75) = P(X = 76), 75, 75, 76, 74, ⇒ C150, = C150, 76 p (1 − p), 75 p (1 − p), , ⇒, , 150!, 150!, (1 − p) =, p, 75! 75!, 76! 74!, , ⇒, , 1, 1, (1 − p) =, p, 75, 76, , ⇒, , p, 76, =, 1 − p 75
Page 12 :
12. x2 + y2 = 16 … (i) and y2 = 6x … (ii), , Points of intersection of curve (i) and (ii) is, , , , , , , , , , , , A 2, 2 3 and B 2,-2 3, , Also, , C 4,0 ., , Area, , OBCAO = 2 (Area ODA + Area DCA), , 4, 2, , 2 y 2dx y 1dx , 2, 0, , 4, 2, , 2 6x dx 16 x2 dx , 2, 0, , 4, , 2 , 2, , 2, x, 16, , x, 16, x, , , , 2 6. x3 2 , sin 1 , , 2, 2, 4 , 3, 0 , 2 ,
Page 13 :
2 6, 2.2 3, 1 , 2, .2 2 0 8sin 1 1 , 8sin 1 , 2 , 2, 3, , , , , , , , 16 3, , , 16. 4 3 16. , 3, 2 , 6, , 4 3 16 , , , sq. units., 3, 3 , , OR, , x2 y2, , 1, a2 b2, x y, 1, a b, , ...(1), ...(2), , Equation (i) gives y = b 1 , , , , , x2, a2, , Equation (ii) gives y = b 1 (Area of the smaller region), , a, y y dx, 2, 0 1, , , , , , x, a
Page 14 :
a, a x, x2, = b 1- dx - b 1- dx, a2, 0, 0 a, a x , ba, = a2 - x2 dx - b 1- dx, a0, 0 a , a, a, , , x2 , b x a2 - x2 a2, x, =, +, sin-1 - b x - , a, 2, 2, a, 2a , 0, , 0, a2 , b a2, = sin-11 - b a - , a 2, 2a , , , =, , , , , , , , ab π ab 1, . - = ab π -2 sq. units., 2 2 2 4, , 13. Let the position vectors of the three points be,, , a, , i, , j 2k,b, , 2i, , j, , k and c, , i, , k., , 2j, , So, the equation of the plane passing through the points a,b and c is, , r a . b c, , c a, , 0, , r, , i, , j 2k . i 3j, , r, , i, , j 2k . k 3j 9i, , r., , 9i 3j k, , r. 9i 3j k, , 14, , j 3k, , 0, , 0, , 0, , 14, , ... 1, , So, the vector equation of the required plane is r. 9i, The equation of the given line is r, , 3i, , j k, , 2i 2j, , Position vector of any point on the give line is, , r, , 3, , 2, , i, , 1 2, , j, , 1, , k, , ... 2, , The point (2) lies on plane (1) if,, , 3 2, , i, , 93 2, 11, , 1 2, 3, , j, , 1 2, , 1, , k . 9i 3j k, 1, , 25 14, 1, , Putting, , 1 in (2), we have, , 14, , 3j k, , 14, , k ., , 14.
Page 15 :
r, , 3 2, 3 2, i, , i, 1 i, , 1 2, , j, , 1, , k, , 1 2, , 1 j, , 1, , 1 k, , j 2k, , Thus, the position vector of the point of intersection of the given line and plane, (1) is i, , j 2k and its co-ordinates are 1, 1,, , 2 ., , 14., , This is a case of bernoulli trials., p = P(Success) = P(getting a spade in a single draw) =, q P(Failure) 1 p 1 , , 13 1, , 52 4, , 1 3, , 4 4, 4, , 1, 1, i. All the four cards are spades = P(X = 4) = C4p q , 256, 4, 12, 3, ii. Only 3 cards are spades= P(X = 3) = 4 C3p3q1 , , 256 64, 4, , 4 0