Page 1 :
Chapter, , 8, , APPLICATION OF INTEGRALS, 8.1 Overview, This chapter deals with a specific application of integrals to find the area under simple, curves, area between lines and arcs of circles, parabolas and ellipses, and finding the, area bounded by the above said curves., 8.1.1 The area of the region bounded by the curve y = f (x), x-axis and the lines, x = a and x = b (b > a) is given by the formula:, b, , b, , f ( x) dx, , ydx =, , Area =, a, , a, , 8.1.2 The area of the region bounded by the curve x = φ (y), y-axis and the lines, y = c, y = d is given by the formula:, d, , Area, , d, , xdy = φ ( y ) dy, , =, c, , c, , 8.1.3 The area of the region enclosed between two curves y = f (x), y = g (x) and the, lines x = a, x = b is given by the formula., b, , Area =, a, , [ f ( x) – g ( x)] dx , where f (x) ≥, , g (x) in [a, b], , 8.1.4 If f (x) ≥ g (x) in [a, c] and f (x) ≤ g (x) in [c, b], a < c < b, then, c, , Area =, , b, , [ f ( x) – g ( x)] dx + ( g ( x) – f ( x)) dx, , a, , c, , 8.2 Solved Examples, Short Answer (S.A.), Example 1 Find the area of the curve, y = sin x between 0 and π., Solution We have, π, , , , o, , o, , π, Area OAB = ∫ ydx = ∫ sin x dx = – cos x 0, , = cos0 – cosπ = 2 sq units., , 20/04/2018
Page 2 :
APPLICATION OF INTEGRALS 171, , Example 2 Find the area of the region bounded by the curve ay2 = x3, the y-axis and, the lines y = a and y = 2a., Solution We have, 2a, , 2a, , xdy =, , Area BMNC =, , 1, , 2, , a 3 y 3 dy, , a, , a, , 1, , 3a 3 53, y, =, 5, , 2a, , a, , 1, 5, 5, 3a 3, 3, ( 2a ) – a 3, =, 5, 1, , 5, , 5, 3, = a 3 a 3 ( 2 )3 – 1, 5, 2, 3 2, 3, 2.2, – 1 sq units., a, =, 5, , Example 3 Find the area of the region, bounded by the parabola y2 = 2x and the, straight line x – y = 4., Solution The intersecting points of the given, curves are obtained by solving the equations, x – y = 4 and y2 = 2x for x and y., We have y2 = 8 + 2y i.e., (y – 4) (y + 2) = 0, which gives y = 4, –2 and, x = 8, 2., Thus, the points of intersection are (8,, 4), (2, –2). Hence, 4, , Area =, , , , 1, , ∫ 4 + y – 2 y, , –2, , y2 1 3, 4, – y, y, +, =, 2, 6, , 2, , , dy, , , 4, , = 18 sq units., –2, , Example 4 Find the area of the region, bounded by the parabolas y2 = 6x and, x2 = 6y., , 20/04/2018
Page 3 :
172 MATHEMATICS, , Solution The intersecting points of the given parabolas are obtained by solving these, equations for x and y, which are 0(0, 0) and (6, 6). Hence, 6, , 6x –, , Area OABC =, , 3, 2, , 0, , 6, 3, , x, x, x, –, dx = 2 6, 3 18, 6, 2, , 0, , 3, 3, 2, = 2 6 (6) – (6) = 12 sq units., 3, 18, Example 5 Find the area enclosed by the curve x = 3 cost, y = 2 sint., Solution Eliminating t as follows:, , x = 3 cost, y = 2 sint ⇒, , x, = cos t ,, 3, , y, = sin t , we obtain, 2, x2 y 2, +, = 1,, 9 4, which is the equation of an ellipse., From Fig. 8.5, we get, 3, , the required area = 4, , 2, 9 – x 2 dx, 3, 0, , 8 x, 9, x, 9 – x 2 + sin –1, =, 3 2, 2, 3, , 3, , = 6 π sq units., 0, , Long Answer (L.A.), Example 6 Find the area of the region included between the parabola y =, , 3x 2, and the, 4, , line 3x – 2y + 12 = 0., Solution Solving the equations of the given curves y =, we get, 3x2 – 6x – 24 = 0, , 3x 2, and 3x – 2y + 12 = 0,, 4, , ⇒ (x – 4) (x + 2) = 0, , 20/04/2018
Page 4 :
APPLICATION OF INTEGRALS 173, , ⇒ x = 4, x = –2 which give, y = 12, y = 3, From Fig.8.6, the required area = area, of ABC, 4, , =, –2, , 12 + 3 x, dx –, 2, , 4, , 3x 2, dx, 4, –2, , 4, , 4, , , 3x 2 , 3 x3, +, 6, x, –, =, = 27 sq units., 4 –2 12 −2, , Example 7 Find the area of the, region bounded by the curves x = at2, and y = 2at between the ordinate, coresponding to t = 1 and t = 2., Solution Given that x = at2 ...(i),, , y, putting the, 2a, value of t in (i), we get y2 = 4ax, Putting t = 1 and t = 2 in (i), we get, x = a, and x = 4a, Required area = 2 area of ABCD =, y = 2at ...(ii) ⇒ t =, , 4a, , 4a, , a, , a, , 2 ∫ ydx = 2 × 2 ∫ ax dx, 3 4a, , =8 a, , ( x )2, , =, , 3, , 56 2, a sq units., 3, , a, , Example 8 Find the area of the region above the x-axis, included between the parabola, y2 = ax and the circle x2 + y2 = 2ax., Solution Solving the given equations of curves, we have, x2 + ax = 2ax, or x = 0, x = a, which give, y = 0., y=±a, , 20/04/2018
Page 6 :
APPLICATION OF INTEGRALS 175, , Hence, from Fig. 8.9, we get, a, , Required Area = 2 Area of OAB = 2, , a 2 – x 2 dx, a, 2, , a, , x, = 2 2, , , a2 – x2 +, , a2, x, sin –1 , 2, a a, , 2, , a2 a, 3 a2 , ., –, ., – . , a, , =2 2 2 4, 2, 2 6, , , `=, =, , (, , a2, 6 – 3 3 – 2, 12, , (, , ), , ), , a2, 4 – 3 3 sq units., 12, , Objective Type Questions, Choose the correct answer from the given four options in each of the Examples 10 to 12., Example 10 The area enclosed by the circle x2 + y2 = 2 is equal to, (A) 4π sq units, (C) 4π2 sq units, , (B) 2 2 sq units, (D) 2π sq units, 2, , 2 – x2, , Solution Correct answer is (D); since Area = 4, 0, , =4, , x, 2, , 2, , 2 – x + sin, , –1, , 2, , x, 2, , = 2π sq. units., 0, , x2 y 2, +, = 1 is equal to, a2 b2, (C) πa2b, (D) πab2, , Example 11 The area enclosed by the ellipse, (A) π2ab, , (B) πab, , a, , b 2, a – x 2 dx, a, 0, , Solution Correct answer is (B); since Area = 4 ∫, , 20/04/2018
Page 7 :
176 MATHEMATICS, , a, , 4b x 2, a2, x, a – x 2 + sin –1 = πab., , =, a 2, a 0, 2, Example 12 The area of the region bounded by the curve y = x2 and the line y = 16, (A), , 32, `, 3, , (B), , 256, 3, , (C), , 64, 3, , (D), , 128, 3, , 16, , Solution Correct answer is (B); since Area = 2 ∫ ydy, 0, , Fill in the blanks in each of the Examples 13 and 14., Example 13 The area of the region bounded by the curve x = y2, y-axis and the line, y = 3 and y = 4 is _______., , 37, sq. units, 3, Example 14 The area of the region bounded by the curve y = x2 + x, x-axis and the, line x = 2 and x = 5 is equal to ________., Solution, , 297, sq. units, 6, 8.3 EXERCISES, Short Answer (S.A.), 1. Find the area of the region bounded by the curves y2 = 9x, y = 3x., 2. Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py., 3. Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0., 4. Find the area of the region bounded by the curve y2 = 4x, x2 = 4y., 5. Find the area of the region included between y2 = 9x and y = x, 6. Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2, 7. Find the area of region bounded by the line x = 2 and the parabola y2 = 8x, , Solution, , 8. Sketch the region {(x, 0) : y =, , 4 – x 2 } and x-axis. Find the area of the region, , using integration., 9. Calcualte the area under the curve y = 2 x included between the lines x = 0, and x = 1., 10. Using integration, find the area of the region bounded by the line 2y = 5x + 7, xaxis and the lines x = 2 and x = 8., , 20/04/2018
Page 8 :
APPLICATION OF INTEGRALS 177, , 11. Draw a rough sketch of the curve y = x – 1 in the interval [1, 5]. Find the, area under the curve and between the lines x = 1 and x = 5., 12. Determine the area under the curve y =, , a 2 – x 2 included between the lines x, , = 0 and x = a., 13. Find the area of the region bounded by y = x and y = x., 14. Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0., 15. Find the area bounded by the curve y = x , x = 2y + 3 in the first quadrant, and x-axis., Long Answer (L.A.), 16. Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x., 17. Find the area bounded by the curve y = sinx between x = 0 and x = 2π., 18. Find the area of region bounded by the triangle whose vertices are (–1, 1), (0,, 5) and (3, 2), using integration., 19. Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x2 + y2 ≤ 16a2}. Also find, the area of the region sketched using method of integration., 20. Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7., 21. Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5., 22. Find the area bounded by the curve y = 2cosx and the x-axis from, x = 0 to x = 2π., 23. Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and, find the area of the region bounded by them, using integration., Objective Type Questions, Choose the correct answer from the given four options in each of the Exercises, 24 to 34., 24. The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤, (A), , , is, 2, , (B) ( 2 + 1 ) sq units, , 2 sq units, , (D) ( 2 2 – 1 ) sq units, (C) ( 2 – 1 ) sq units, 25. The area of the region bounded by the curve x2 = 4y and the straight line, x = 4y – 2 is, (A), , 3, sq units, 8, , (B), , 5, 7, 9, sq units (C) sq units (D), sq units, 8, 8, 8, , 26. The area of the region bounded by the curve y = 16 − x 2 and x-axis is, (A) 8 sq units, , (B) 20πsq units (C) 16π sq units, , (D) 256π sq units, , 20/04/2018
Page 9 :
178 MATHEMATICS, , 27. Area of the region in the first quadrant enclosed by the x-axis, the line y = x, and the circle x2 + y2 = 32 is, (A) 16π sq units (B) 4π sq units (C) 32π sq units (D) 24 sq units, 28. Area of the region bounded by the curve y = cosx between x = 0 and x = π is, (A) 2 sq units, (B) 4 sq units (C) 3 sq units (D) 1 sq units, 29. The area of the region bounded by parabola y2 = x and the straight line 2y = x is, , 4, 2, 1, sq units, (B) 1 sq units (C) sq units (D) sq units, 3, 3, 3, 30. The area of the region bounded by the curve y = sinx between the ordinates, (A), , , and the x-axis is, 2, (A) 2 sq units, (B) 4 sq units, x = 0, x =, , (C) 3 sq units, , 31. The area of the region bounded by the ellipse, , (D) 1 sq units, , x2 y 2, +, = 1 is, 25 16, , (A) 20π sq units (B) 20π2 sq units, (C) 16π2 sq units (D) 25 π sq units, 32. The area of the region bounded by the circle x2 + y2 = 1 is, (A) 2π sq units, (B) π sq units (C) 3π sq units (D) 4π sq units, 33. The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is, (A), , 7, sq units, 2, , (B), , 9, 11, 13, sq units (C), sq units (D), sq units, 2, 2, 2, , 34. The area of the region bounded by the curve x = 2y + 3 and the y lines., y = 1 and y = –1 is, (A) 4 sq units, , (B), , 3, sq units (C) 6 sq units, 2, , (D) 8 sq units, , 20/04/2018