Page 1 :
Differential Equations, 1 Mark questions:, 1. Define a differential equation., It is an equation containing derivatives., 2. Define order of a differential equation., It is highest order of derivative appearing in the given equation., 3. Define degree of a differential equation., It is the highest power of highest ordered derivative appearing in the given, equation., 4. Define general solution of a differential equation., It is solution of given differential equation and it contains arbitrary constants., 5. Define particular solution of a differential equation., It is that solution of given differential equation and is free from arbitrary constants., 2 Marks questions:, 1. Form a differential equation of family of, i. Straight lines with slope = m and passing through origin., Consider a straight line with slope = m and passing through origin, i.e. y = mx -----(1), y1 = m -------(2), , ii., , y = x y1, , Circles with centre on y-axis and passing through origin., Consider x 2 y 2 2 fy 0 1 2 x 2 yy1 2 fy 1 0, x yy1 , f, 2 , 1, y , , , , , , x 2 y 2 2 x yy1 0, , 2. Solve the following by using separation of variables., i. x dy y dx dx dy, d xy d x y , , ii., , a y2, dy, , 0, dx, 1 x2, , , iii., , d xy d x y xy x y c, , dy, , , , 1 y, , 2, , dx, , , , 1 x, , 2, , 0 sin 1 y sin 1 x c, , 1 x dy, 1 y 0, dx, 2, , 2, , 1
Page 4 :
y1 , , , , 2y, x, x, , P, , 2, x, , , , Pdx 2 log x log x 2, , I . f is e, , 2, , 3. y1 y cot x 2 x x 2 cot x, P cot x, , , , , , Pdx, , 2, e logx x 2, , x4, x4, 2, x dx , yx , c, 4, 4, , Solution is y. x x .x dx , 2, , Qx, , ;, , 3, , ; y 2 0, , Q 2 x x 2 cot x, , ;, , Pdx cot x dx log sin x, , e, , Pdx, , e logsin x sin x, , , , , , Solution is y. sin x 2 x sin x x 2 cot x sin x dx, 2 x sin x dx x 2 cos x dx 2 x sin x dx x 2 d sin x , 2 x sin x dx x 2 sin x 2 x sin x dx, , y sin x x 2 sin x c, , given, y 2 0 Q 2 c c 2 y sin x x 2 sin x 2, , 4. y1 3 y e2 x, P3, , , , Q e 2 x dx, , ;, , Pdx 3dx 3x, , I. f . e, , Pdx, , Solution is y. e3 x e3 x e 2 x dx, , 5., , x 3 y y, 2, , 1, , y , y 0 y1 , , e3 x, e x dx e x y . e3 x e x c, , y, x 3y2, , dx x 3 y 2, dx x, , 3y, dy, y, dy y, 1, P, ; Q 3y, Pdy log y log y 1, y, , , , , , 1, 1, I . f . e log y , y, 1, 1, x, Solution is x. . 3 y dy 3 3 y c, y, y, y, , 6. y1 2 y tan x sin x, P 2 tan x, , , , ;, , Q sin x, , Pdx 2 tan x dx 2 log cos x log cos x , , 2, , 2, I . f . e logcos x cos 2 x, , Solution is y. cos 2 x sin x . cos 2 x dx , cos x d cos x y cos 2 x cos 3 x c, 2, , 4
Page 5 :
7., , x y dy 1, dx, , , , , , , , dx, x y, dy, , dx, x y P 1 ; Q x y, dy, , Pdy 1dy y, , I. f . e, , Pdy, , , , e y, , Sol. is x . e y e y . y dy y d e y, , , , ye y e y ye y e y x e y e y y 1 c, , 8. 1 x 2 y1 2 xy , y1 , , , , 1, 1 x2, , , , 2x, 1, y, 2, 1 x, 1 x2, , , , , , , , P , , , , , , 2x, log 1 x 2, 1 x2, , Pdx , , , y 1 x tan, , , , 2x, 1 x2, , I. f . e, , 1, , 1, , 1 x , , 2 2, , Pdx, , 1 1x dx 1 1x, , Sol. is y . 1 x 2 1 x 2 ., 2, , ; Q, , 2, , 2, , , , 2, e log1 x 1 x 2, , dx, , xc, , 9. y1 3 y cot x sin 2 x, P 3 cot x ; Q sin 2 x, , , , , , Pdx 3 cot x 3 log sin x log sin 3 x, , I. f . e, , Pdx, , , , e logsin x sin x , 3, , 3, , , , , , Sol. is y . sin x sin 1 x . 2 sin x cos x dx, 3, , , , 10., , 1, , cos x dx, 2 sec x tan x dx 2 sec x, sin 2 x, , dx, x, tan 1 y, , , dy 1 y 2 1 y 2, P , , , , 1, 1 y2, , tan 1 y, a y2, , 1, Pdx, 1, tan 1 y, dy, , tan, y, , I, ., f, ., , e, , e, 1 y2, , Pdy , , Sol. is x .e, , ; Q, , tan 1 y, , , , e, , tan 1 y, , tan 1 y, dy t et dt , t tan 1 y, 2, 1 y, , t d et te t et dt te t et xe tan, , 1, , y, , tan 1 y e tan, , 5, , 1, , y, , c, ,
Page 6 :
Statement problems:, 1. Find equation of a curve which passes through origin given that slope at any point, on it = sum of coordinates., given, , dy, x y, dx, , dy, yx, dx, , y 0 0, , &, , P 1, , Qx, , ;, , Pdx 1dx x I . f . e, , , , Pdx, , e x, , , , , , Sol. is y . e x . x dx, , ye x x d e x, , xe x e x dx, , ye x xe x e x c, , given y 0 0 0 0 1 c c 1 ye x x 1e x 1, , 2. Find the equation of a curve which passes through (0, 2) given that sum of, coordinates at any point exceeds slope at that point by 5., dy, 5, dx, , Given, x y , , , , Pdx 1 dx x, , P 1 ; Q x 5, , I. f . e, , Pdx, , dy, y x 5, dx, , Sol. is ye x x 5e x dx, , ex, , , , x d e x 5 e x dx xe x e x dx 5e x, ye x xe x e x 5e x c, , given, y 0 22 0 1 5 .1 c c 8, , y e x e x x 6 8, , 3. Find the equation of curve which passes through (0, 1) given that slope of that at, any point = sum of abscissa and product of coordinates., dy, x xy, dx, , Given,, P x, , Pdx , , 2, , 2, , 2, , Sol. is y . e x, , 2, , , , d ex, , 2, , 2, , e, , given, y 0 1, y ex, , 2, , dy, xy x, dx, , ; Qx, , I . f . ex, ex, , , , 2, , e x, , x2 2, , 2, , 2, , x2, x dx , 2, , e x 2 dx, 2, , c, , 1, e 0 e 0 c c 8, 2, , 2, , 2, , 6
Page 7 :
4. Find the equation of the curve which passes through (0, 1) given that slope at any, dy , satisfies (x – y) (dx + dy) = dx –dy., dx , , point on it , , Given, x y dx dy dx dy, , d x y , x y log x y c, x y, given, y 0 1, 0 1 log 1 c c 1 x y log x 2 1, , dx dy , , 5. Find the equation of curve which passes through (0, 2) given that product of, ordinate and slope at that point = abscissa., Given,, , ydy, x, dx, , y dy x dx, given, y 0 2, , , y2 x2, , c, 2, 2, 2, , 2, , 0 c c 2, 2, , , y2 x2, , 2 x2 y2 4 0, 2, 2, , 6. Find the equation of a curve which passes through (1, 1)., Given, x, , given, x, , dy, x 2, dx, , y 2, , dy, x 2 y 2, dx, , , , dy, x2, , dx, , y2 x , , 2, log y 2 1 dx x 2 log x c, x, given, y 1 1, log 3 1 2 log x c, c log 3 1 log y 2 x 2 log x log 3 1, , 7. At any point P on a curve slope =2 (slope segment joining P & A (-4, -3). Find its, equation if it passes through (-2, 1), dy, dy, dx, x3, 2, 2, , dx, y3, x4, x4, log y 3 2 log x 4 c, Given,, , given, y 2 1, , log y 2 log 2 c c 0, , log y 3 2 log x 4, 8., , In a bank principal, increases continuously at the rate of 5% per year. In how many years, 2, of Rs.100 doubles itself? Use log e 0.6931, , 7
Page 8 :
dp, 5, dp, t, , .P 20, dt log P , c, dt 100, P, 20, P et 20. ec P Ket 20, Given, , given P0 1000, , 1000 ke0 k 1000, , P 1000et 20 2000 1000et 20 2 et 20 log 2 , t 20 log 2 200.6931 13.862, , t, 20, , 9. Find the equation of a curve whose differential equations is y1= ex sinx given that it, passes through origin., y1 e x sin x, , , , dy, e x sin x, dx, , dy e x sin x dx, , x, ex, sin x cos x c But y0 0 c 1 2 y e sin x cos x 1, 2, 2, 2, dy, 10. Find equation of a curve, whose differential equation, 1 x2 1 y 2, dx, given that it passes through A (0, ½), , y , , , , given,, , , , , , , dy, 1 x2 1 y2, dx, , , , , , , , 1 1 y , x3, x c, log , 2 1 y , 3, , given y 0 1 2, c , , , , dy, 1 x 2 dx, 1 y2 , , 1 11 2 , 00c, log, 2 1 1 2 , , 1, 1 1 y , x3 1, x log 3, log 3 log , 2, 2 1 y , 3 2, , 8, , , ,