Page 2 :
coma ms xm=0, , a, , i variable with highest index, , (aaa, , “ the given equation{ F< _]a quadratic equation., , , , , , , , , , Activity 7 DORE ec aree ores, One root of the quadratic equation kx” — 10x +3 =0, is ; Complete the following activity, to find the, , value of k., his a root of the given quadratic equation., , Substitute x = : in the given quadratic equation,, , “AGG, , , , k gklSpay, [Sep ]rs-0 3 a a es, , , , , , , , , , , , =0, , , , , , , , Activity 8 Date : .....-------.-. =, Complete the following activity, to determine, the nature of the roots of the quadratic equation, 2x*—5x-3=0., , Here, a =2, b= —5,c= —3., , dae =[=5] -4@)(-9), -[es}v, -[43], , ~. —4ac>0, , The roots are[ Reon) and Tdoutica!, , , , , , , , p — 30 +0FO, =0, , SECTION 1; HOME ASSIGNMENTS
Page 3 :
—, , , , , , , , , , , , De eg a asnvny nd tania, , , , , , numbers which are divisible by 4. AP. are 6 and 3 respectively., ‘The two-digit numbers divisible by 4 are 12, 16, Complete the following activity to find S,,., 20, ..., 96. Here, a = 6,d=3, S, =?, , Here, t,, = 96., f,=a+(n—ld, , + 6 =[12]+(n-)x[G], %=8+[hn] = 96-k=4n, , ° |, r n-23] Una 8, , , , , , Rough work, , VIKAS MATHEMATICS PRACTICAL BOOK (INTERNAL EVALUATION HANDBOOK) STANDARD X, , The first term and the common difference o, , s, ~2{[Ba]+- na], Sq -%[12+a7-v[B]|, , Date: ....s-255
Page 4 :
CQLAB, A-P-C,, A-Q-B. Prove, that, AAPB and, AAQC are similar., , ‘Complete the activity by filling the boxes., , In AAPB and AAQC,, , , , , , , , , , ... [From (1) and, , ZPAB = ZQAC ~-[[Germen Angle] |, , U, . QAPB ~ AAQC q, , [By test of similarity, , , , , , , , , , , , , , , Activity 3 Die: Activity 4 Date :...--_Observe the given figure and complete the following In order to prove, ‘Ratio of areas of two tria, activity. is equal to the ratio of the products of their bases |, a and corresponding heights.”, (i) Draw a neat labelled figure., D (ii) Write ‘Given’ and ‘To prove’., a6” | Figure :, \ \, é i | N, zB=/ 2D ... (Each is of measure mo \ \, , , , | o» (BY test of similarity), , , , , , S, 3, ., ¥, 2, , , , , , | |, |, L ACH f, , 12 VIKAS MATHEMATICS PRACTICAL BOOK (INTERNAL EVALUATION HANDBOOK) : STANDARD X, , pus
Page 5 :
| In AABC,, , ‘py 30°-60°-90° triangle theorem,, , aB=1xac and BC |, , =) AB= 5x8 and BC=, , , , , , , , GB, [ac, , , , , , , , , , Exe, , , , , , , , », AB=| /y | cm and Bc=[ 4G] cm, , , , , , , , Inhee ae AR Oa eeget, - AB+[AC2] 2AQ@? + 2BQ?, , ... (Apollonius theorem), 2 Weta eae, aah [ao] = 72, On simplifying, a, A@=[BE], Aa-[ 2 |, , ... (Taking square roots of both the sides), , , , , , , , , , , , , , , , , , Activity 7, , With the help of the information, given in the figure, complete A, the following activity to find AB, , , , , , , , , , , , , , , , , , and BC., AB=BC ... (Given), ., ZBAC= BCA =[4e, 1, ’. AB=BC =|} x AC, Te |”, | a, =| =| /8, SH, = 6 x 2/2, . AB=BC =2, , , , , , Activity 8 (ORG are, A ladder rests on a pole such that the base of the, ladder is 27 dm away from the base of the pole. The, top of the ladder touches the top of the pole at a, height of 120 dm. Complete the following activity, , , , , , , , i, : to find the length of the ladder., In AABC, IN, ZABC = 90°, .. by Pythagoras theorem, z, A |= aB?+[BC7 g, | \y, 3 AC? = 120? +277, Bo27dm C, ., AC = 123, Length of the ladder is 123 dm, SECTION 1: HOME ASSIGNMENTS HAM Aen 13,