Page 1 : INVERSE TRIGONOMETRIC FUNCTIONS, , INVERSE TRIGONOMETRIC FUNCTIONS, 1. INVERSE OF SINE FUNCTION, , b. cos: R 1,1, , f x sin x, , a., , c. cos:... , 0 or 0, or , 2 ... 1,1 is, both one-one and onto, , Y, , d. cos 1 : 1,1 0, is called inverse function, , –3/2 –/2 /2 3/2, sin=X, , –, 2, O, –2, , , , y=1, X, y = –1, , value branch of cos, , 1, , f x cos1 x, , y, , Y, , , , b. sin: R 1,1, , , 2, , 3 3 , ,, or, , or, ,, ..., c. sin:... , 2 2 2 2 2 , 2, 1,1, is both one-one and onto, , sin, , , , 1, , tan=X, , –, , , 2, , cos=X, , CHETHAN M G, , O, , , , 3/2, , X, , , , , : nI R, 2, , , , 3, , , , , , , , , 3 , , Y, , Y, , /2, , –/2, , b. tan : R 2n 1, , , , , , –, , Y, , 2. INVERSE OF COS FUNCTION, , O, –3/2 – –/2 /2, , –3/2, , x, , , , , e. sin 1 sin x x , x , 2 2, f. sin sin 1 x x , x 1, 1, f x cos x, , f x tan x, , Y, , (1,0), , a., , , , y, , , 2, , x, , 3. INVERSE OF TAN FUNCTION, , a., , (–1,0), , , , (1,0), , f. cos cos1 x x , x 1,1, , function of sin function, where , , is range, 2 2, or principal value branch of, , –1, , e. cos1 cos x x , x 0, , , , , is called inverse, d. sin 1 : 1,1 , 2 2, , , f x sin 1 x, , , , of cos function, where 0, is range or principal, , y=1, X, 3/2 y = –1, , c. tan :... , ,, or , or , ... R is both, 2 2 2 2 2 , 2, one-one and onto, , d. tan 1 : R , , is called inverse function of, 2 2, tan function, where is range or principal, , , , 2 2, , value branch of tan 1, , f x tan 1 x,
[email protected], Phone number-8105418762 / 7019881906, , 1
Page 2 : CONCEPTS OF MATHEMATICS FOR KCET -JEE MAIN AND ADVANCED, , y, , Y, , /2, x, , cosec=X, (–/2,–1), , , e. tan 1 tan x x , x , , , 2 2, , 4. INVERSE OF COT FUNCTION, , f x cot x, Y, , –3/2, , –, , /2, , –/2, O, , 3/2, , , y = –1, , Y, , , , cot=X, –2, , (3/2,–1), , b. cos ec : R n : n I R 1,1, , f. tan tan 1 x x , x R, , a., , X, , O, , –/2, , , , y=1, , (/2, 1), , (–3/2,1), , 2 X, , c. cos ec :... 3 , or , 0 or , 3 ..., 2 2 , 2 2, 2 2 , , , , , , , R 1,1, is both one-one and onto, , d. cos ec 1 : R 1,1 , , 0 is called, 2 2, inverse function of cosec function,, , where , , 0 is range or principal value, 2 2, branch of cos ec 1, , f x cos ec 1 x, , y, , Y, , b. cot: R n : n I R, , y = /2, , c. cot :... , 0 or 0, or , 2 ... R, is both one-one and onto, d. cot 1 : R 0, is called inverse function of cot, , (–1,0), , function, where 0, is range or principal value, , O, , y = –/2, , branch of cot 1, f x cot 1 x, , y=, (0, /2), , 6. INVERSE OF SEC FUNCTION, , a., , x, , e. cot, , , , 0, 2 2, f. cos ec cos ec 1 x x , x R 1,1, e. cos ec 1 cos ec x x , x , , y, , 1, , x, , (1,0), , f x sec x, , cot x x , x 0, , , f. cot cot 1 x x , x R, , sec=X, , (–2,1), –3/2, , Y, , (2,1), , (0,1), /2, , –/2, , –, –2, (––1), , 2, (–1), , 5. INVERSE OF COSEC FUNCTION, , 5/2, , 3/2, , O, , y=1, , y = –1, , f x cos ecx, , a., , Y, , 2, ,
[email protected], https://t.me/mcpmathematicskar_1986, Phone number-8105418762 / 701988190, , X, , MCP-MATHEMATICS
Page 3 : INVERSE TRIGONOMETRIC FUNCTIONS, , , , , b. sec: R 2n 1, , , , : n I R 1,1, 2, , , c. sec :... , 0 or 0, or , 2 3 ..., 2 , 2, 2, R 1,1, , 6., , if 0, , , , sec ;, cot 1 cot ;, , 5. sec, , 1, , if 0, , , , 2, , PROPERTY –II, , , , if x 1,1, cos cos x x;, if x 1,1, tan tan x x;, if x R, cos ec cos ec x x; if x , 1 1, , sec sec x x; if x , 1 1, , cot cot x x;, if x R, , 1. sin sin 1 x x;, , is both one-one and onto, , , 2, , 2., , d. sec 1 : R 1,1 0, is called inverse, , 3., , , function of sec function, where 0, is range, 2, 1, or principal value branch, of s ec, y, , f x sec1 x, , 4., 5., 6., , 1, , 1, , 1, , 1, , 1, , (0,), PROPERTY –III, , 1. sin 1 x sin 1 x;, (0,/2), , (–1,0), , O, , (–1,0), , x, , 3., 4., , , e. sec 1 sec x x , x 0, , 2, 1, f. sec sec x x , x R 1,1, , , , , , 5., , DOMAIN AND RANGE OF INVERSE TRIGONOMETRIC, FUNCTION, , Function, , Domain, , Range, , sin 1 x, , 1,1, , cos1 x, , 1,1, , , 2 , 2 , , tan 1 x, , R, , cot 1 x, , R, , sec x, , R 1,1, , cos ec 1 x, , R 1,1, , 1, , 2. cos cos ;, 1, , 3. tan 1 tan ;, , 0, , , 4. cos ec 1 cos ec ;, CHETHAN M G, , if x 1,1, if x 1,1, if x R, , if x , 1 1, , 6. cot 1 x cot 1 x;, , if x R, , 1. sin 1 1 cos ec 1 x, if x , 1 1, , x, 2. cos 1 1 sec 1 x,, if x , 1 1, , x, , , , , 2 2, , 0, , , if x 0, , cot x;, 1, 3. tan 1 , 1, , 0, , 2, , 2 , 2 0, , x cot x;, , PROPERTY –V, , 1. sin 1 x cos 1 x , , , if , , 2 2, , if 0, , , , if , , 2 2, , , 1, , PROPERTY- IV, , PROPERTIES OF INVERSE TRIGONOMETRIC, FUNCTION, PROPERTY -I, , 1. sin 1 sin ;, , x cos x;, tan 1 x tan 1 x;, cos ec 1 x cos ec 1 x;, if x , 1 1, , sec1 x sec1 x;, , 2. cos, , 1, , 1, 1, 2. tan x cot x , , , 2, , , , 1, 1, 3. sec x cos ec x , , 2, , 1, , if x 0, , ; if x 1,1, , ;, , if x R, , , ; if x , 1 1, , 2, , PROPERTY VI, , 1. sin 1 x sin 1 y , , if , 0, 2 2,
[email protected], Phone number-8105418762 / 7019881906, , 3
Page 4 : , , CONCEPTS OF MATHEMATICS FOR KCET -JEE MAIN AND ADVANCED, , , , sin 1 x 1 y 2 y 1 x 2 ;, if 1 x, y 1& x 2 y 2 1 or, , , if xy 0 & x 2 y 2 1, , , 1, 2, 2, 2, 2, sin x 1 y y 1 x ; if 0 x, y 1& x y 1, , sin 1 x 1 y 2 y 1 x 2 ;, if 1 x, y 0 & x 2 y 2 1, , , , , , , 1, , 2. sin, , , , , , x sin, , , , 1, , , , 1. sin x cos, , , , sin 1 x 1 y 2 y 1 x 2 ;, if 1 x, y 1& x 2 y 2 1 or, , , if xy 0 & x 2 y 2 1, , , 1, 2, 2, 2, 2, sin x 1 y y 1 x ; if 0 x 1, 1 y 0 & x y 1, , sin 1 x 1 y 2 y 1 x 2 ; if 1 x 0,0 y 1& x 2 y 2 1, , , , , , , , PROPERTY VII, , 1. cos 1 x cos 1 y , , , , , , cos 1 xy 1 x 2 1 y 2 ; if 1 x, y 1& x y 0, , , 2 cos 1 xy 1 x 2 1 y 2 ; if 1 x, y 1& x y 0, , 2. cos 1 x cos 1 y , , , , , , , , , , , cos 1 xy 1 x 2 1 y 2 ; if 1 x, y 1& x y, , , cos 1 xy 1 x 2 1 y 2 ; if 1 y 0,0 x 1& x y, , , , , , , PROPERTY VIII, , 1. tan, , 1, , x tan 1 y , , , x y , tan 1 , , ; if xy 1, 1 xy , , , 1 x y , tan , ; if x 0, y 0 & xy 1, 1 xy , , , x y , tan 1 , ; if x 0, y 0 & xy 1, , 1 xy , , 2. tan 1 x tan 1 y , , , x y , tan 1 , , ; if xy 1, 1, , xy, , , , , 1 x y , tan , ; if x 0, y 0 & xy 1, 1 xy , , , x y , tan 1 , ; if x 0, y 0 & xy 1, , 1 xy , 4, , PROPERTY IX, 1, , y, , , , , xy 1, yx, xy 1, 4. cot 1 x cot 1 y cot 1, yx, 3. cot 1 x cot 1 y cot 1, , 1, , 1 x tan, 2, , x, , 1, , 1 x2, , cot, , 1, , 1 x2, x, , 1 , 1, sec 1 , cos ec 1 , , 2, x, 1 x , 2. cos 1 x sin 1 1 x 2 tan 1, , 1 x2, x, cot 1, x, 1 x2, , 1 , 1, sec 1 cos ec 1 , , 2, x, 1 x , x , 1 , 1 1 , 3. tan 1 x sin 1 , cos 1 , , cot , 2, 2, x, 1 x , 1 x , 1 x2 , cos ec 1 , sec 1 1 x 2, x , , , , , , PROPERTY X, , , , , , , , 1, 1, , 1, 2, x, sin 2 x 1 x ; if , 2, 2, , 1, , 1. 2sin 1 x sin 1 2 x 1 x 2 ; if, x 1, 2, , , 1, 1, 2, sin 2 x 1 x ; if 1 x , 2, , 1, 2, cos 2 x 1 ; if 0 x 1, 2. 2 cos 1 x , , 1, 2, , 2 cos 2 x 1 ; if 1 x 0, , , , , , , , , , , 1 2 x , tan 1 x 2 ; if 1 x 1, , , , , 2x , 3. 2 tan 1 x tan 1 , ; if x 1, 2 , 1 x , , , 1 2 x , ; if x 1, tan , 2 , 1 x , , ,
[email protected], https://t.me/mcpmathematicskar_1986, Phone number-8105418762 / 701988190, , MCP-MATHEMATICS
Page 5 : INVERSE TRIGONOMETRIC FUNCTIONS, , PROPERTY XI, , 1, 1, , 1, 3, sin 3 x 4 x ; if 2 x 2, , 1, 1. 3sin 1 x sin 1 3x 4 x 3 ; if x 1, 2, , 1, , 1, 3, sin 3x 4 x ; if 1 x 2, , 1, , 1, 3, cos 4 x 3x ; if 2 x 1, , 1, 1, 1, 2. 3cos x 2 cos 1 4 x3 3x ; if x , 2, 2, , 1, , 1, 3, 2 cos 4 x 3x ; if 1 x 2, , , , , , , , , , , , , , , , , , , , , , , 1 3 x x , 1, 1, ; if , x, tan , 2 , 3, 3, 1 3x , , , 3x x3 , 1, , ; if x , 3. 3 tan 1 x tan 1 , 2 , 3, 1 3x , , , 3, , , tan 1 3 x x ; if x 1, 2, , 3, 1 3x , 3, , PROPERTY XII, , 2., , 3., , 1, , If tan x tan y tan z , , then xy yz zx 1, , 2, , ,, , If tan 1 x tan 1 y tan 1 z ,, then x y z xyz, CHETHAN M G, , If cos 1 x cos 1 y cos 1 z 3 , then, xy yz zx 3 & x y z 1, , 7., , If cos 1 x cos 1 y cos 1 z , then, , x 2 y 2 z 2 2 xyz 1, 8., , If sin 1 x sin 1 y sin 1 z , , then xy yz zx 3, , 3, ,, 2, , If sin 1 x sin 1 y , then, cos 1 x cos 1 y , 1, 1, 10. If cos x cos y , then, sin 1 x sin 1 y , , 11. If tan 1 x tan 1 y , then xy 1, 2, , 1, 1, 2, 2, 9., , 12. If cos A cos B , , 2, , , then A B 1, , , 2, , , then xy 1, , x, y, cos 1 ,, a, b, , x 2 2 xy, y2, , cos, , , sin 2 , 2, 2, a, ab, b, , , , , x, sin 1, , 2, 2, a, a x , 3a 2 x x3 , x, 3 tan 1, 16. tan 1 , 2, 2 , a, a(a 3x ) , x, , 15. tan 1 , , x y z xyz , 1. tan x tan y tan z tan , , 1 xy yz zx , , 1, 1, 1, 1, , ,, , 6., , then, , SHORT CUT METHODS, , 2, , x 1 x2 y 1 y 2 z 1 z 2 2 xyz, , 14. If cos 1, , 2, , 1 1 x , ; if 0 x , cos , 2 , , 1 x , 1, 2. 2 tan x , 2, cos 1 1 x ; if x 0, , 2 , , 1 x , , , 1, , 5., , then x 2 y 2 z 2 2 xyz 1, If sin 1 x sin 1 y sin 1 z , then, , 13. If cot 1 x cot 1 y , , 1 2 x , sin 1 x 2 ; if 1 x 1, , , , , 2x , 1. 2 tan 1 x sin 1 , ; if x 1, 2 , 1 x , , , 1 2 x , ; if x 1, sin , 2 , 1 x , , , 1, , If sin 1 x sin 1 y sin 1 z , , , , , , , , 4., , 1 x2 1 x2 1, 1 2, 17. tan 1 , cos x, 2, 2, 1 x 1 x 4 2, , 1 x 1, cos 1 x, 1 x 2, 1, 1 y, , 19. If cos x cos, a, b, 18. tan 1, , then, , x 2 2 xy, y2, , cos, , , sin 2 , a 2 ab, b2, , a sin, , 1, 20. If sin x, , 1, , yb , ,
[email protected], Phone number-8105418762 / 7019881906, , 5
Page 6 : CONCEPTS OF MATHEMATICS FOR KCET -JEE MAIN AND ADVANCED, 2, , (a) Does not exist, (c) 1, , 2, , x, 2 xy, , cos y 2 sin 2 , 2, b, a, ab, 1, 1, 21. asin x b cos x c then, ab c a b , asin 1 x b cos 1 x , ab, , then, , TYPE:1 FIND THE VALUES, , [KCET-2020-1m] [Only one option correct], , Solution:(a) Does not exist because, 1, , , (a), 2, , 5, (b), 3, , 10, (c), 3, , (a) , , (d) 0, , 5, cos 5 , Solution:(a) cos 1 cos sin 1 , , 3 , , 3 2, , , 1, 1, sin x cos x , 2, , , 5, , 3. Value of cos 1 cos, 3, , , 5 , , 1 , sin sin, is, 3 , , , , 2, 10, (a)0, (b), (c), (d), 3, 2, 3, 5, , 5, , , , , , 1, Solution:(a) cos 1 cos, sin sin, , 3, 3 , , , , , , , , , cos 1 cos 2 sin 1 sin 2 , 3 , 3 , , , , 0, 3 3, 2, 4. If sin 1 x sin 1 y , , then, 3, cos 1 x cos 1 y , 2, , , (a), (b), (c), (d) , 3, 3, 6, 2, Solution:(b) sin 1 x sin 1 y , 3, , , 2, , cos 1 x cos 1 y , 2, 2, 3, , cos 1 x cos 1 y ., 3, , , , 5. The value of cos sin 1 cos 1 is, 3, 3, , 6, , , , 3, , 1,1, , 3, is, 2 , , 6. The principal value of sin , , , LEVEL-I, , 1. sec2(tan–12) + cosec2(cot–13) =, a) 1, b) 5, c) 10, d) 15, Solution:(d) 1 + tan2(tan–12) + 1 + cot2(cot–13)= 1 + 22, + 1 + 32 = 15, 5 , 5 , 1 , 2. The value of cos 1 cos, sin cos, is, 3 , 3 , , , , (b) 0, (d) 1, , 2, 3, , (b) , , , 3, , 4, 3, , , (c), , (d), , 5, 8, , , Solution:(b) sin 1 sin , 3, 3 , , , , 1, sin x , 2, 2, , 7. If sin 1[sin ( 600)] , then one of the possible, value of is, , 2, 2, (d) , 3, 3, 1, o, Solution:(a) sin [sin(600 )], = sin 1[ sin(360 240)], sin 1[ sin 240o ] sin 1[ sin(180o 60o )] , (a), , , 3, , (b), , , 2, , (c), , , sin 1 sin 60o sin 1 sin ., 3, 3, , , , , 8., , 1, , , , sec [sec(30 )] , o, o, (a) – 60, (b) 30, o, o, (c) 30, (d) 150, o, , Solution:(c) sec1[sec(30o )] sec1 (sec30o ) 30o, 12, 4, 63, 9. sin 1 cos 1 tan 1, , 13, 5, 16, (a)0, , (b), , , 2, , (c) , , (d), , 3, 2, , Solution:(c) tan 1 12 tan 1 3 tan 1 63, , 5, 4, 16, 48, , 15, 63, ( xy 1 ), tan 1, tan 1, 20 36, 16, 63, 63, tan 1, tan 1, ., 16, 16, , , , x y , tan 1 x tan 1 y tan 1 , ; if x 0, y 0& xy 1, 1 xy , , , , 10. sin 1, (a), , , 6, , 1, cot 1 3 is equal to, 5, (b), , , 4, ,
[email protected], https://t.me/mcpmathematicskar_1986, Phone number-8105418762 / 701988190, , (c), , , 3, , (d), , , 2, , MCP-MATHEMATICS
Page 7 : INVERSE TRIGONOMETRIC FUNCTIONS, , Solution:(b) sin 1, , 1, , , , , , , 1, 1 , 1, 5 cot 1 3, cot 1 3 cot 1 , 1 , 5, , 5 , , ., 1, 1 2 3 1 , 1, , cot (2) cot (3) cot , cot (1) , 4, 3 2 , xy 1, 1 x2 , cot 1 x cot 1 y cot 1, & sin 1 x cot 1, , yx, x , , 3, , then, 2, 9, the value of x100 y100 z100 101 101 101, x y z, is equal to, (a)0, (b)3, (c)– 3, (d)9, 1, Solution:(a) As we know sin x cannot be greater, , , 1, 1, 1, than ,So sin x sin y sin z , 11. If sin 1 x sin 1 y sin 1 z , , 2, , 2, , Therefore x y z 1, Putting these values in the expression, we get, 111, , 12. cot 1, , 9, 0., 111, , (a)0, (b)1, (c) cot 1 x cot 1 y cot 1 z, (d)None of these, xy 1, yz 1, zx 1, Solution:(a) cot 1, cot 1, cot 1, x y, yz, zx, , cot 1 y cot 1 x cot 1 z cot 1 y cot 1 x cot 1 z 0 ., 13. If cos x cos y then sin 1 x sin 1 y is, 4, , (a)0, (b), (c) 3, (d) , 4, 4, 1, , Solution:(c) If cos 1 x cos 1 y then, , sin 1 x sin 1 y , If sin 1 x sin 1 y then cos 1 x cos 1 y , , sin 1 x sin 1 y , 1, , 1, , 14. If tan 1 tan 2 tan, , 1, , 4, , 3, , 4, , x then the value of, , x, (a) 1, (b) 0, (c) 1, (d) 3, 1, 1, Solution:(d) If tan x tan y tan 1 z then, , x y z xyz, tan 1 1 tan 1 2 tan 1 x then, 1 2 x 1 2 x, 3x x 2x x 3, CHETHAN M G, , (c) , , (d) 3 / 2, , x 2 x 1, x, , Solution:(b), , Therefore the principal value of sin 1 x , 16. sin 1 x sin 1, , (b), , 3, 2, , (c), , , 2, , ., , 1, 1, cos 1 x cos 1 , x, x, , (a) , , , 2, , (d) None of these, , 1, 1, cos 1 x cos 1, x, x, , , sin 1 x cos ec 1 x cos 1 x sec 1 x , 2 2, 1, 17. The value of sin 2sin 0.8 , is equal to, 1, 1, Solution:(a) k sin x sin, , (a) sin1.20, , xy 1, yz 1, zx 1, cot 1, cot 1, , x y, yz, zx, , 1, , 1, 2 , the principal value of sin 1 x is, x, (a) / 4, (b) / 2, , 15. If x , , (b) 0.96 (c) 0.48, , (d) sin1.60, , [KCET-14-1m] [Only one option correct], 1, Solution:(c) Let sin 0.8 sin 0.8 sin , , 5, 4, , cos , , , 3, , , , 4, 5, , 3, 5, , , , sin 2sin 1 0.8 sin 2, 4 3 24, 2sin cos 2 0.96, 5 5 25, 1, 1, 1, 18. If sin x cos x tan x , x 0 , then the, smallest interval in which lies is given by, , 3, (a) , (b) 0 , 2, 4, , , , (c) 0, (d) , 4, 2, 4, Solution:(b), , sin1 x cos1 x tan1 x = 2 tan 1 x, , We know , , , 2, , tan 1 x , , , , , , tan 1 x , 2, 2, , , , 0, , , 2, , , 2, , tan 1 x ., ,
[email protected], Phone number-8105418762 / 7019881906, , 7
Page 8 : CONCEPTS OF MATHEMATICS FOR KCET -JEE MAIN AND ADVANCED, 1, , 19. If in a triangle ABC, A tan 2 and B tan 1 3,, then angle C is equal to, (a) / 2, (b) / 3, (c) / 4, , (d) None of these, , 1, 1, Solution:(c)Given that A tan 2, B tan 3, , We know that A B C , , 53 , , Solution:(d) sin 1 cos, , 5 , , , 3 , sin 1 cos 10 cos 2n cos , 5 , , 3 , sin 1 cos sin cos , 2, , 5 , , 3 , sin 1 sin , 2 5 , 5 6 , sin 1 sin , , 10 , , tan 1 2 tan 1 3 C , 23 , tan 1 , C , 1 2 3 , , tan 1 (1) C , 3, , , C C ., 4, 4, a, a, 1, 1, 20. tan cos 1 tan cos 1 equal, b, b, 4 2, 4 2, to, 2b, a, b, 2a, (a), (b), (c), (d), a, b, a, b, , a, a, cos , b, b, a, a, 1, 1, tan cos 1 tan cos 1 =, b, b, 4 2, 4 2, 1 t 1 t, , , , where t tan, 1 t 1 t, 2, , 1, Solution:(b) Let cos, , 2, , 2, , (b), , , 2, , 5 2, cos 1 x sin 1 y, 5, 3, cos 1 x sin 1 y, 5, 3, cos 1 x sin 1 y , 5, 1, 1, 4, , 24. If tan x tan y , then cot 1 x cot 1 y is, 5, equal to, , 2, , (c)0, , (d)None of these, , xz , xy , yz , Solution:(b) tan 1 tan 1 tan 1 , zr , xr , yr , , xy yz xz xyz , 3 , , xr yr r , 1 zr, tan, tan 1 ., 2, 2, 2, , 2, x y z , 1 , , 2, r, , , , 53 , , 22. The value of, sin 1 cos, is, 5 , , (a) 3, 5, , (b) 3, 5, , (d) , , 10, , 10, , 8, , (a) 2, , (b) , , (c) 3, , 5, , 5, , 5, , (d) , , [KCET-17-1m] [Only one option correct], , Solution:(b) tan 1 x tan 1 y 4, , , , , (c) , , [KCET-16-1m] [Only one option correct], , , , sin 1 y 2 ,, 5, 2, cos 1 x sin 1 y, , cos 1 x , , 2 5, , zx , yz , xy , tan 1 tan 1 tan , zr , xr , yr , , (a) , , Solution:(b) sin 1 x cos 1 y 2 ,, 5, , 2, , 21. If x y z r , then, 2, , [KCET-18-1m] [Only one option correct], , , , (1 t 2 ), 2, 2b, ., , , 2, 1 t, cos , a, 2, , , sin 1 sin , , , , 10 10 2 2 , 23. If sin 1 x cos 1 y 2 , then cos 1 x sin 1 y, 5, is, 2, 3, 4, 3, (a), (b), (c), (d), 5, 5, 5, 10, , 2, , 2, , cot 1 x , cot 1 x , , , , 2, , 2, , 5, , cot 1 y 4, , cot 1 y 4, , , , 5, 5, , , , cot 1 x cot 1 y 4 , 5 2 2, 4 5, cot 1 x cot 1 y 4 , 5, 5, cot 1 x cot 1 y , , , , 5, ,
[email protected], https://t.me/mcpmathematicskar_1986, Phone number-8105418762 / 701988190, , MCP-MATHEMATICS
Page 9 : INVERSE TRIGONOMETRIC FUNCTIONS, , 1, 2, , 25. The value of the expression tan cos 1, (a) 2 5, , (c), , (b) 5 2, , 52, 2, , , x, , Solution:(c) tan sin 1 , , 2, , , , Put x sin , , sin , 1 sin 2 , tan sin 1 , , 2, , 2, , [KCET-18-1m] [Only one option correct], , 2, , 5, , 2, cos 1, 5, 2, , 4, 2 , & sin 1 cos 1 , 1 5, 5, 2, , 4, 54, 1, sin 1 , , 2, 5, 5, 5, , 1, , 1 2 , tan , (ii) tan cos, , 5, 2, 2, , , , , sin 2sin cos , 2 , 2, 2 sin , , 1 cos, , , cos , 2 cos2 , 2, 2, 1, 5 2, 5 1, , , 2, 52, 52, 5 2, 1, 5, , , , , , 5 2, , , , , , , , 5 2, 5 2, 5 4, , , , 5 22 , , , , , 26. The domain of the function defined by, f x cos 1 x 1 is, 2, , (a) 0,1, , (c) 0, 2, , (b) 1, 2, , (d) 1,1, , [KCET-2020-1m] [Only one option correct], , Solution:(b) f x cos 1 x 1, , W.k.t 1 y 1 & 0 cos 1 y , , 1 x 1 1, , 0 x 1 1, 0 x 1 1, 1 x 2, x 1, 2 Domain, 1, 27. Given 0 x , then the value of, 2, CHETHAN M G, , , , , 1 x2 , x, , 1, tan sin 1 , , sin x is, 2 , , , , 2, , 1, (a) 3, (b), (c) 1, (d) 1, 3, [KCET-14-1m] [Only one option correct], , (d) 5 2, , Solution:(b) (i)Put cos 1, , 2 , is, 5, , , , 1 x2, 2, , , , , 1, , , sin, x, , , , , , , , 1, sin sin , , , , , , tan sin 1 cos 450 sin sin 450 cos , tan sin 1 sin 450 , , , 0, 0, tan 45 tan 45 1, , , , , , 28. The range of sec 1 x is, , (a) 0, , (b) , , 2 2, 2, , , (c) , , (d) 0, , 2 2, [KCET-17-1m] [Only one option correct], [NCERT-DIRECT QUESTION], , , 2, 2 2, 1 1 , 29. The value of sin 1 , is equal to, 3 sin 3 , , , , , , 2, (a), (b), (c), (d), 3, 6, 2, 4, Solution:(a) 0, , , [KCET-15-1m] [Only one option correct], , Solution:(b), , 2 2, 1, 1, sin 1 sin cos , 3, 3, 3, 2 2, , , , , 1 1 , 1 2 2, 1 2 2, sin 1 , sin sin , cos , , 3, 3 , 3 , 3 , 2 2, , 1 1 , 3, sin 1 , sin , 1, 3 2, 3 , , 3, 3, , , 2 2, 30. cos 2 sin 1 cos 1 , 4, 4, , 3, (a) does not exist, (b), 5, 3, 3, (c), (d), 4, 4, [KCET-19-1m] [Only one option correct],
[email protected], Phone number-8105418762 / 7019881906, , 9
Page 10 : CONCEPTS OF MATHEMATICS FOR KCET -JEE MAIN AND ADVANCED, , 3, 3, , Solution:(d) cos 2sin 1 cos 1 , 4, 4, , 3, 3, 3, , cos sin 1 sin 1 cos 1 , 4, 4, 4, , 3 , 3 3, , , cos sin 1 sin sin 1 , 4 2, 4 4, , , 31. If a , , , , 2, , 1, , 1, , 2 tan x 3cot x b .Then, , ' a '& ' b ' are respectively, , (a), &, 2, 2, , , , (c), , 2, , (d) 0 & , , & 2, , Solution:(c) 0 cot 1 x , cot 1 x 2, 2 tan 1 x 2 cot 1 x cot 1 x 2, , 2 tan 1 x 3cot 1 x 2 1, , Given, , , , 2, , 2 tan 1 x 3cot 1 x b 2 , , From 1&2 a , , , 2, , a , , 32. If x n , x 2n 1, , , 2, , , 2, , & b 2, , , n Z then, , sin cos x cos sin x , sin 1 , , tan 1 cot x cot 1 tan x , , , 1, , a), , , , 1, , b), , , , c), , , , d), , , 2, , 6, 4, sin 1 (cos x) cos 1 (sin x) , Solution:(d) sin 1 , tan 1 (cot x) cot 1 tan x , , , 3, , 1 , , , , 1 , sin sin x cos cos x , , , 2, 2, sin 1 , 1 , , , , 1 , tan tan 2 x cot cot 2 x , , , , , , , , , x x, , 1 2, 2, sin , , , , x x, 2, 2, , , , sin 1 (1) , 2, , 10, , 2, , , , x x, 3, , A Bx C, , then, x x2 1, , 1, 1, cos ec 1 cot 1 sec 1 c , A, B, a) 5, b) 0, c) , d) , 2, 6, 6, , [KCET-2015-1M] [One option correct type], , x 1, , Solution:(a), , 2, , , , A Bx C, 2, x, x 1, , x x, 2, x 1 A Bx C, x2 1, x x 2 1 x, , (b) 0&2, , [KCET-19-1m] [Only one option correct], , a, , 33. If, , x 1, , 3, , x 1, , 2, , , , , , A x 2 1 x Bx C , , Put x 0 1 A, Comparing c of x 2 1 A B 1 1 B B 0, Comparing co-eff of x 2 C, 1, 1, 1, cosec 1 cot 1 sec 1 , A, B, C, , 5, 1 , cosec 1 1 cot 1 sec 1 0 , 3, 6, 2 2, , 34. If 3 i a ib c id, , , , b, d, then tan 1 tan 1 , a, c, a) 2n , n I, , 3, , c) n , , , 3, , b) n , , , 6, , d) 2n , , , nI, , Solution:(b) 3 i a ib c id , , , n I, , , 3, , , nI, , 3 i ac adi ibc bd, 3 i ac bd ad bc i, , ac bd 3 , ad bc 1, b, d , bc ad , tan 1 tan 1 tan 1 , , a, c, ac bd , 1 , tan 1 , , 3, , n , , , , , n I, 6, 1 , 1, tan 1 , tan , 3, 3, tan, , , , 6, , tan n , ,
[email protected], https://t.me/mcpmathematicskar_1986, Phone number-8105418762 / 701988190, , , 6, , MCP-MATHEMATICS
Page 11 : 1, 1 y, ,then 4 x 2 4 xy cos y 2 is, 35. If cos x cos, 2, , equal to, 2, (a) 4sin , (c) 2sin 2, , 2, , y, , a, , b, , then, , x 2 2 xy, y2, , cos, , , sin 2 , 2, 2, a, ab, b, x, y, 1, cos 1 ;, Here cos, 1, 2, 2, x 2 xy, y2, , cos , sin 2 , 1, 2, 4, 2, y, x 2 xy cos , sin 2 , 4, 2, 4 x 4 xy cos y 2 4sin 2 ., 36. If 2sin 1 x 3cos 1 x 4 then 2sin 1 x 3cos 1 x, equals, , 6 4, 4 6, 0, (b), (c) 3, 2 (d), 5, 5, 1, 1, Solution:(a) If a sin x b cos x c then, ab c(a b), a sin 1 x b cos 1 x , ab, put a 2, b 3, c 4 wages, (2)(3) 4(2 3) 6 4, 2sin 1 x 3cos 1 x , , 23, 5, 6 4, , 5, (a), , 37. The domain of the function defined by, , f x cos, , 1, , (a) 0,1, , (c) 0, 2, , x 1 is, (b) 1, 2, , (d) 1,1, , [KCET-2020-1m] [Only one option correct], , Solution:(b) f x cos 1 x 1, , W.k.t 1 y 1 & 0 cos 1 y , , 1 x 1 1, , 0 x 1 1, , 0 x 1 1, 1 x 2, , x 1, 2 Domain, , CHETHAN M G, , 1. If a, b, c be positive real numbers and the, , a(a b c), b( a b c ), tan 1, bc, ca, c( a b c), tan 1, , then tan is, ab, (a)0 (b)1, (c) a b c (d)None of these, , Value of tan 1, , (b) 4sin , (d) 4, , 1, 1, Solution:(d) If cos x cos, , INVERSE TRIGONOMETRIC FUNCTIONS, LEVEL-II, , Solution:(a), a(a b c), b( a b c ), c(a b c), tan 1, tan 1, tan 1, bc, ca, ab, 2, Let s , , abc, abc, , tan 1 a 2 s 2 tan 1 b2 s 2 tan 1 c 2 s 2, , tan 1 (as) tan 1 (bs) tan 1 (cs), as bs cs abcs 3 , 2, 2, 2, 1 abs bcs cas , , tan 1 , , (a b c) abcs 2 , tan s , 0, 2, 1, , (, ab, , bc, , ca, ), s, , , 2, [ abcs (a b c)], Trick: Since it is an identity so it will be true for, any value of a,b,c. Let a b c 1 then, , tan 1 3 tan 1 3 tan 1 3 , tan 0 ., 1, 1, 1, 2. If sin x sin y sin z 3 and, 2, f (1) 2 , f ( x y) f x f y , x, y , , then, x, , f (1), , y f (2) z f (3) , , x, , f (1), , x yz, y f (2) z f (3), , is, a)0, Solution:(c), , (b)1, , c) 2, , sin 1 x sin 1 y sin 1 z , , d) 3, , 3, x y z 1, 2, , xy yz zx 3, f ( x y ) f ( x) f ( y ), f 1 1 f (1) f (1) f (2) (2)(2) 4, , f 2 1 f (2) f (1) 4 2 8 f (3) 8, , x f (1) y f (2) z f (3) , , x, , f (1), , x yz, y f (2) z f (3), , 111, 1 14 18, 3, 111, 3 1 2, 111, 12 14 18 , , 2, ,
[email protected], Phone number-8105418762 / 7019881906, , 11
Page 12 : 2 cos, , 1, 3. If cos x, , 1, , y3 0, , CONCEPTS OF MATHEMATICS FOR KCET -JEE MAIN AND ADVANCED, , 19, , cot tan 1 n 1 tan 1 n , n 1, , , , , then, , 9 x 2 12 xy cos 4 y 2 is, , , , 1, 1, 1 x y , tan x tan y tan , , 1 xy , , , (b) 36sin 2 , (d) 36 cos 2 , , (a) 36, (c) 36sin 2 , , y , Solution:(c) If cos x cos, then, a, b, x 2 2 xy, y2, , cos, , , sin 2 , a 2 ab, b2, Here a 2 , b 3, x2, 2 xy, y2, , cos, , , sin 2 , 2, 2, 2 (2)(3), 3, 2, 2, x, xy, y, cos , sin 2 , 4 3, 9, 2, 9 x 12 xy cos 4 y 2 36sin 2 , 1, 1, 1, 4. If tan x tan y tan z then the, 2, 2, 2, 2, value of x y z x y z 2 is equal to, 1, , (a) 1, , (b) 2, , 1, , (c) 3, , (d) 4, , 1, 1, 1, Solution:(b)If tan x tan y tan z , , xy yz zx 1, , x y z, , 2, , 2 then, , x 2 y 2 z 2 2(xy yz 2 x), , , , , , (x y z)2 x2 y 2 z 2 2(1) 2, , cot[tan 1 2 tan 1 1 tan 1 3 tan 1 2 , tan 1 4 tan 1 3 .... tan 1 20 tan 1 19 ], , , , 22, (c) 19, 21, , 23, 21, (d), 19, , [JEE Main-10/1/2019-Shift-II-4M], [One option correct type], , n, 19, , , 1, Solution:(d) cot cot 1 2 p , n 1, , p 1 , , 19, , n n 1 , cot cot 1 1 2, , n 1, 2 , , , 19, , cot cot 1 n n 1 1 , n 1, , 19, , , 1, cot tan 1 , n n 1 1 , n1, , , , , 12, , , , , , cot y cot x , , , , , cot tan 1 cot tan 20 , , cot tan 1 20 cot tan 1 1 1, 1, , 1, , , 1 , cot cot 1 cot cot 1 1 1, 20 , , , 1 , cot cot 1 1 cot cot 1 , 20 , , 1, 1 1 1 20 21, 20, , , 1, 20, , 1, 19, 1, 20, 1 3 , 1 1 , 6. If cos , tan , where of, 5, 3, , , , , , , , , , , , then is equal to:, 2, 9 , 9 , 1 , 1 , (a) tan , (b) sin , , , 5 10 , 5 10 , 9 , 1 , 1 9 , (c) cos , (d) tan , , 14 , 5 10 , , 0 , , , n, 19, , , 1, cot, 1, , 2 p is, , , , n 1, , p 1 , , , (b) 22, , , , cot[tan 1 20 tan 1 1] cot x y cot x cot y 1 , , 5. The value of cot , (a) 23, , , , [JEE Main-8/4/2019-Shift-I-4M], [One option correct type], , Solution:(b), , 3, 5, , 1, (i) cos cos , , , , 3, 4, sin , 5, 5, , 3, 4,5 are pythagoras triplets , , 1, 3, 3, , 1, (ii) tan , tan , , & cos , , 1, 1, sin , 3, 10, , 1,3, 10 are pythagoras triplets , , , 10 , (iii) w.k.t. sin sin cos cos sin , 4 3 3 1 , sin , , , 5 10 5 10 , ,
[email protected], https://t.me/mcpmathematicskar_1986, Phone number-8105418762 / 701988190, , MCP-MATHEMATICS
Page 13 : INVERSE TRIGONOMETRIC FUNCTIONS, , Since x 5 & x 2 1 are always positive so, , 3 4 1, 3 3, sin , , , 10 5 5 , 10 5 , 9, 9 , sin 1 , sin , , 5 10, 5 10 , , x 5, x2 1, , (ii) So for domain, , 12 , 1 3 , sin , 13 , 5, , 1, 7. The value of sin , , , , sin 1 x sin 1 y sin 1 x 1 y 2 y 1 x 2 ;, , , , , , 2, 2, 2, 2, if 1 x, y 1& x y 1 or if xy 0 & x y 1, , (a), , 17 1, 2, 17, (d), 2, , [JEE Main-02/09/2020-Shift-I-4M], [One option correct type], , x 5, , 2, x 1 , , Solution:(c) (i) f x sin 1 , , 1 , , x 5, x2 1, , 1, , CHETHAN M G, , , 2, , (b), , 5, 4, , (c), , 3, 2, , (d), , 7, 4, , [JEE Main-3/9/2020-Shift-I-4M], [One option correct type], , x 5, 8. The domain of the function f x sin 1 2 , x 1 , , (b), , 1 17, 2, , is equal to:, , 33,56, 65 are pythagoras triplets , , 17, 1, 2, 1 17, (c), 2, , , , , 1 17, 1 17 1 17 , x , , , a , , 2, 2 2, , , 4, 5, 16 , , 9. 2 sin 1 sin 1 sin 1 , 5, 13, 65 , , , 12 4 3 5 , sin 1 , 13 5 5 13 , 48 15 , 33 , sin 1 sin 1 , 65 65 , 65 , , 33 , 56 , cos 1 sin 1 , 2, 65 2, 65 , , (a), , 2, , , 1 17 , 1 1 17 , x , x, , , 0, , 2, 2, , , , 1 17, 1 17, x, rejected case or x , 2, 2, , x, , is , a a, . Then a is equal to:, , 2, , , , Solution:(a) sin 1 , , , , 1, , , , 2, x x 4 0 x 1 1 16 1 1 17 , , [JEE Main-12/4/2019-Shift-I-4M], [One option correct type], , , , x2 1, , 2, 2, x 5 x 1 x x 2 , x , , , , 1 63 , (b) sin , 65 , 1 33 , (d) cos , 65 , , 12 , 1 3 , sin , 13 , 5, 12, 9 3, 144 , sin 1 , 1, 1, , 25 5, 169 , 13, , x 5, , x 5 x2 1, , is equal to:, , , 1 56 , (a) sin , 2, 65 , , 1 9 , (c) cos , 2, 65 , , 0, x , , , , , 4, 5, 16 , sin 1 sin 1 , 5, 13, 65 , 4, 5, 16 , , 2 tan 1 tan 1 tan 1 , 3, 12, 63 , , , 1, Solution:(c) 2 sin, , , , 4,3,5 , 5,13,12 , 16,65,63 are pythagoras triplets , , , , 4 5 , , , 16 , 3 12 , 2 tan 1 , tan 1 , 63 , 4 5 , , 1 , , , 3 12 , , , , 48 15 , 1 16 , 2 tan 1 , tan, , 63 , 36 20 , , 63, 16 , , 2 tan 1 tan 1 , 16, 63 , , 16, 16 , 3, , 2 cot 1 tan 1 2 , 63, 63 , 2 2, ,
[email protected], Phone number-8105418762 / 7019881906, , 13
Page 14 : CONCEPTS OF MATHEMATICS FOR KCET -JEE MAIN AND ADVANCED, , 10. If S is the sum of the first 10 terms of the series, , (a) 0, , 1, 1, 1 , tan tan 1 tan 1 ...,, 3, 7, 13 , Then tan S is equal to:, 1, , 6, (a), 5, , 5, (b), 6, , 10, (c), 11, , x 2 xy xy y 2 , , , y x y, tan 1 1 , tan 1 2, 2, y xy x xy , 4, , , y x y, , , , 1, 1, 1, tan 1 tan 1 ...10th term, 3, 7, 13, 2 1 , 3 2 , S tan 1 , tan 1 , , 1 2 1 , 1 3 2 , , , , , 43 , 11 10 , tan 1 , ... tan 1 , , 1 4 3 , 1 1110 , , , , , 1, 1, 1, 1, S tan 2 tan 1 tan 3 tan 2 , S tan 1, , , , , , , , TYPE:2 SIMPLIFIED FORM, LEVEL-I, , 1., , sin 1, , x, is equal to, xa, , x, a, x, a, , (a) cos 1, (c) tan 1, , (b) cosec1, , x, a, , (d)None of these, , Solution:(c) Putting x a tan 2 , , sin 1, , x, a tan 2 , a tan , sin 1, sin 1, 2, xa, a sec , a tan a, , x, sin 1 sin tan 1 , ., a, , , , x, 1 x y , 2. The simplified form of tan tan , , y, x y, 1, , 3 5cos x , is equal to, 5 3cos x , x, x, 1, , (a) tan 1 tan , (b) 2 tan 1 2 tan , 2, 2, 2, , 1, x, x, , 1, (c) tan 1 2 tan , (d) 2 tan 1 tan , 2, 2, 2, , 2, , 3. cos 1 , , 11 1 , S tan 1 11 tan 1 1 S tan 1 , , 1 11 , 10 , 5, S tan 1 tan 1 , 12 , 6, , 5 5 , tan S tan tan 1 , 6 6 , , , , , (d) , , x x y , , , , x, x y, y x y , 1 , tan 1 tan 1 , , tan, , x x y , y, x y, 1 , , y x y , , , Solution:(b), , , , 2, , Solution:(b), , [JEE Main-05/09/2020-Shift-I-4M], [One option correct type], , , , (c) , , 4, , [KCET-2016-1M] [One option correct type], [NCERT-DIRECT QUESTION], , 5, (d), 11, , tan 1 4 tan 1 3 ... tan 1 11 tan 1 10, , (b) , , Solution:(d)We take x , , , then cos x 0, 2, , 3 5cos x , 1 4 , 1 3 , cos 1 , cos tan 3 , , 5 3cos x , 5, , x, 1, Put x in 2 tan 1 tan we get, 2, 2, 2, , 1, 2 tan 1 tan , 4, 2, , 1 , 2. 2 , 4, 1 1 , 1, tan 1 ., 2 tan tan , , 1, 3, 2, 1 , 4, , LEVEL-II, , 1 x2 1 x2 , 1, , x ,, 2, 2, 2, 1 x 1 x , , 1. The values of tan 1 , , x 0 is equal to, 1 1 2, (a) cos x, 4 2, , 1 2, (c) cos x, 4, , (b), (d), , 1 1 2, cos x, 4 2, , 1 2, 4, , cos x, , [JEE-Main-4m- online-17], , Solution:(b), , is equal to, 14, ,
[email protected], https://t.me/mcpmathematicskar_1986, Phone number-8105418762 / 701988190, , MCP-MATHEMATICS
Page 15 : INVERSE TRIGONOMETRIC FUNCTIONS, , 1 x 1 x , 2, tan 1 , Put x cos 2, 2, 2, 1 x 1 x , cos 1 x 2, x 2 cos 2 cos 1 x 2 2 , , 2, 2, , , tan 1 , , , tan 1 , , , , 3. Considering only the principal values, if, , 2, , 1 cos 2 1 cos 2, 1 cos 2 1 cos 2, , , , , , 2cos 2 2sin 2 , cos sin , tan 1 , , 2, 2, cos sin , 2cos 2sin , , 1 tan , , , 1 , tan 1 , tan tan , 1 tan , , 4, 1, , 1, 2, cos x, 4 2, 4, , , , TYPE:3 SOLVE THE INVERSE TRIGONOMETRIC, EQUATIONS, LEVEL-I, 1, 1, 1. If tan 2 x tan 3 x , , (a) – 1, (c) 1,, , , , 4, , , then x =, (b), , 1, 6, , 1, 6, , (d) None of these, , Solution:(b) Trick : Check with the options., , 1, Obviously the equation holds for x ,, 6, but not for – 1., , , 1 , tan(cos 1 x) sin cot 1 , then x is equal to, 2 , , 5, 1, 2, 3, (a), (b), (c), (d), 3, 5, 5, 5, 1, 1, Solution:(d)Put cot 1 cot , 2, 2, 2, sin , . Put cos 1 x then x cos , 5, 2, 5, , x cos , ., 3, 5, 11, 4. The equation 2 cos 1 x sin 1 x , has, Also tan , , 6, (a)No solution, (b)Only one solution, (c)Two solutions, (d)Three solutions, Solution:(a) Given equation is, 11, 2 cos 1 x sin 1 x , 6, 11, 1, 1, cos x (cos x sin 1 x) , 6, 11, , , 4, cos 1 x , , which is not, , c o s1 x , 6, 2, 3, possible as cos 1 x 0, ., , 5., , 2 tan 1 (cos x) tan 1 (cosec2 x), then x =, (a), , , 2, , (b) , , (c), , , 6, , (d), , , 3, , 1 , 2. If sin x cot , then x is, 2 2, 3, 1, 2, a)0, (b), (c), (d), 2, 5, 5, 1 , Solution:(b) sin 1 x cot 1 , 2 2, , Solution:(d) 2 tan 1 (cos x) tan 1 (cos ec 2 x), 2 cos x , 1 , 1 , tan 1 , tan 2 , 2, 1, , cos, x, sin, x, , , , , , 1 1, 1 1 , cot 2 cos, , 5, , , 6. If tan 1 x tan 1 y tan 1 z , then, 1 1 1, , xy yz zx, , 1, , 1, , 1 , ;, 5 2, , sin 1 x cos 1, , 1, Clearly, x , 5, , 2, , , 1, , CHETHAN M G, , , , 2 cos x, 1, , 2, sin x sin 2 x, , 2 cos x 1 x , , , 3, , ., , 1, (d) xyz, xyz, Solution:(b) If tan 1 x tan 1 y tan 1 z , then x y z xyz, (a)0, , (b)1, , (c), , x y z xyz Dividing by xyz, we get, 1, 1, 1, , 1., yz xz xy,
[email protected], Phone number-8105418762 / 7019881906, , 15
Page 16 : CONCEPTS OF MATHEMATICS FOR KCET -JEE MAIN AND ADVANCED, , 2, 1 1, sin 1 sin 1 x, then x is equal to, 7. If sin, 3, 3, 5 4 2, (a) 0, (b), 9, , 54 2, (c), (d), 9, 2, , 10. If 3 tan 1 x cot 1 x then x is, , x y 1, 2, , 2, , , , 8. sin sin 1, , , a) 1, , [KCET-16-1m] [Only one option correct], , c), , 4, 5, , d), , 3 , , 4, 4, 4 , , 4, , , , (a) 1 y, , (c) 1, , 1, (d), 3, , [KCET-15-1m] [Only one option correct], [NCERT-DIRECT QUESTION], , 1 x 1, 1, tan x , x 0 , 1 x 2, 1, tan 11 tan 1 x tan 1 x, 2, 1, tan 1 x tan 1 x , 4 2, 3, 2, tan 1 x , tan 1 x, 4 2, 12, 1, , , tan 1 x x tan, x, 6, 6, 3, , Solution:(d) tan 1, , 16, , (b) y, , 2, , 2, , (c) 0, , 1, , Solution:(a) sin x sin, , (d) 1 y, , 1, , y, , , ,, 2, , , sin 1 y, 2, 1, sin x cos 1 y sin 1 y sin 1 y , , sin 1 x , , , , , 2 , , sin 1 x sin 1 1 y 2 cos1 y sin 1 1 y 2 , , , , , (b) 1, , 2, , , then x 2 is equal to, , [KCET-16-1m] [Only one option correct], , Solution:(d) sin sin 1, , (a) 3, , , , 11. If sin 1 x sin 1 y , , 1, 5, , 1, , cos 1 x 1 ;, 5, , 1, , 1, sin–1 cos 1 x x , 5, 2, 5, 1 x 1, 1, 9. Solve for x tan 1 , tan x, x 0 is, 1 x 2, , 1, 2, , 3tan 1 x cot 1 x 1, Put option (b) x 1 in (1), Eq 1 3tan 1 1 cot 1 1 , , 1, , cos 1 x = 1 then x =, 5, , , b) 0, , (d), , Solution:(b) By inspection method, , Solution:(c), , 1, 1, 2, 4 2, 1, sin 1 sin 1 sin 1 1 1 , 3, 3, 9 3, 9, 3, 54 2, sin 1 , , 9, , , 54 2, Therefore, x , ., 9, sin 1 x sin 1 y sin 1{x 1 y 2 y 1 x 2 }, , , 2, 2, If 1 x, y 1 and x y 1 or if xy 0 and, , (c) 1, , (b) 1, , (a) 0, , , , , , x 1 y Squaring on both sides, 2, , x2 1 y 2, 12., , The number of real solutions of, , tan 1 x( x 1) sin 1 x 2 x 1 , (a)Zero, (c)Two, , , 2, , is, , (b)One, (d)Infinite, , Solution:(c) tan 1 x( x 1) sin 1 x 2 x 1 , , tan, , 1, , , 2, , x( x 1) is defined, when x( x 1) 0, , sin 1 x 2 x 1 is defined, when, 0 x( x 1) 1 1 or 0 x( x 1) 0 ........(ii), From (i) and (ii), x ( x 1) 0 or x 0 and –1., Hence, number of solutions is 2., x 2 x3, , , , x4 x6, 13. If sin 1 x ... cos 1 x 2 ... , 2 4, 2 4, , , , 2, for 0 | x | , (a) 1, 2, , 2, then x equals, 1, (b)1, (c) , 2, ,
[email protected], https://t.me/mcpmathematicskar_1986, Phone number-8105418762 / 701988190, , (d) – 1, , MCP-MATHEMATICS
Page 17 : INVERSE TRIGONOMETRIC FUNCTIONS, , Solution:(b), , We know that, , sin 1 y cos 1 y , 2, , , , 2, , Solution:(b), , , | y | 1 According to question,, , , , 3, , x, x2, , 2 x x3 2 x 2 x3 x x 2, 2 x 2 x2, , x x 2 0 x(1 x) 0 x 0 and x = 1,, but x 0. So, x 1 ., 2, 2x, 1 2a, 1 1 b, , cos, tan 1, , then, 14. If sin, 2, 2, 1 a, 1 b, 1 x2, x, , a b, 1 ab, Solution:(d) Put a tan , b tan and x tan ,, (a) a, , (b) b, , (c), , ab, 1 ab, , (d), , then reduced form is, sin 1 (sin 2 ) cos 1 (cos 2 ) tan 1 (tan 2 ), 2 2 2 , , tan tan , tan, 1 tan .tan , , a b, x, 1 ab, , 2, , 2, , cos1 x cos1 y cos1 z cos1 t , , , , cos1 ( x) 0, , , , , x y z t cos( ) 1, x y 2 z 2 t 2 (1)2 (1)2 (1)2 (1) 2 4, 2, 2x, 2x, , 1 1 x, , 4cos, 2 tan 1, , 16. If 3sin 1, 2, 2, 2, 1 x, 1 x, 1 x, 3, then x , 2, , (a) 3, (c)1, CHETHAN M G, , 1, 3, (d) None of these, (b), , 3(2 ) 4(2 ) 2(2 ) , , , , 3, , , , 6 8 4 , , , , , , 3, , 3, , 1, tan 1 x x tan , 6, 6, 6, 3, , 17. For the equation cos x cos 2 x 0 ,, the number of real solution is, (a) 1, (b) 2, (c) 0, (d) , 1, 1, Solution:(c) cos x cos (2 x) , 1, , 1, , cos 2 x cos x, 2 x cos( cos 1 x), 1, , 1, , 2x x x 0, But x 0 does not satisfy the given equation., , 1. If sin, , the value of x y z t, a) xy zy zt, b) 1 2 xyzt, c) 4, d) 6, 1, 1, Solution:(c) cos x cos y cos 1 z cos1 t 4, This is only possible if, 2, , , , , , LEVEL-II, , cos1 x cos1 y cos1 z cos1 t 4 , then, 2, , 3sin 1 (sin 2 ) 4cos 1 (cos 2 ) 2 tan 1 (tan 2 ) , , No solution will exist., , Substituting these values, we get, 15. If, , 2, 2 tan , 1 1 tan , 3sin 1 , , 4cos, , 2 , 2 , 1 tan , 1 tan , 2 tan , 2 tan 1 , , 2, 1 tan 3, , 2 x cos (cos cos 1 x) sin sin(cos 1 x), , Taking tan on both sides, we get tan( ) tan, , , 2, 2x, 2x, , 1 1 x, , 4cos, 2 tan 1, , 2, 2, 2, 1 x, 1 x, 1 x, 3, , Putting x tan , , x, x, x 4 x6, ... x 2 , , ..., 2, 4, 2, 4, x, x2, , , ( 0 | x | 2 ), , 2, x, x, 1, 1, 2, 2, x, , 3sin 1, , 1, , x 2 sin, , on, (a) circle, (c) ellipse, , 1, , y3 2, , then p(x, y) lies, , (b) parabola, (d) hyperbola, , a sin, , 1, Solution:(c) If sin x, , 1, , yb , , then, , x 2 2 xy, y 2 sin 2 , , cos, , , b2, a 2 ab, a 2, b 3, , 2, 2, 2, x, 2 xy, y sin 2 , , cos, 2 9, 2, 22 (2)(3), x2 y 2, , 1 p ( x, y ) lies on ellipse, 4 9, 1 12 , 1 16 , 2. If x 0, cos cos then ' x ', 2, x, x, equals, (a) 12 16, , (b) 4, , 3, , (c) 3, , 4, , (d) 20, ,
[email protected], Phone number-8105418762 / 7019881906, , 17
Page 18 : Solution:(d) If cos, , 1, , A cos 1 B , , CONCEPTS OF MATHEMATICS FOR KCET -JEE MAIN AND ADVANCED, , , , 2, , then, , 2, , A B 1, , 1 12 , 1 16 , So cos cos , x, x 2, 2, , 2, , 2, , 2, , 2, 2, 12 16 , 1 12 16 x2, x x, x 20 x 0 , , 3. A value of x satisfying the equation, sin cot 1 1 x cos tan 1 x is, , 1, 2, , (a), , (c) 1, , (b) 0, , (d) , , 5. Considering only the principal values of inverse, functions, the set, , 1, 2, , , , A x 0 : tan 1 2 x tan 1 3 x , 4, , , [JEE-Main-4m- online-17], , Solution:(d) cot, , 1, , 1 x 1 x cot , , tan 1 x x tan , 2 2x x2, , 1, , , , 1 x, , sin cot, , 1, , a) Contains two elements, b) Contains more than two elements, c) is an empty set, d) is a singleton, , 1 x2, , x, , [JEE-MAIN-12/1/2019-SHIFT-I], [One option correct type-4M], , , 1, , 1 x cos tan, , , , 1, sin sin 1 , 2, , 2 2x x, 1, 1, , 2, 2 2x x, 1 x2, , 1, , Solution:(d) tan, , x , , 1 1, , cos cos , 2, , , 1 x, , , , , , 1, 2, 3, 2 , 3 , 4. If cos 1 cos 1 , , x then x , 4, 3x , 4x 2, 2 2x x2 1 x2 x , , a) 145, , b) 145, , 11, , 12, , c), , 146, 10, , d), , 146, 11, , [JEE-Main-4m- online-19], , 2 , 3 , cos 1 cos 1 1 , 3x , 4x , , 1, , 2 x tan 1 3 x , , , 4, , 2 x 3x , tan 1 , , 1 2 x 3x 4, , , , 5x , 5x , , tan, tan 1, , 2 , 2 , 4, 1 6x , 1 6x 4, 5x, , 1 5x 1 6 x2, 1 6 x2, 2, 6x2 5x 1 0 6 x 6 x x 1 0, 6 x x 1 1 x 1 0, x 1 6 x 1 0 x 1 or x , , 1, 6, , 1, x 0, 6, A is a singleton, 6. All x satisfying the inequality, x, , 2 , 3 , Solution:(b) cos cos 1 , , 3x , 4x 2, 2 , 3 , cos 1 cos 1 , 3x 2, 4x , 2 , 3 , cos 1 sin 1 , 3x , 4x , 1, , 18, , 2, 2, 9, 3 , , 1 , 1, 3x, 3x, 16 x 2, 4x , 4, 9, 4, 9, 2 1, 2, 1, 2, 9x, 16 x, 9 x 16 x 2, 64 81, , 1, 9 16 x 2, 145, 145, x2 , x, 9 16, 3 4, 145 , 3, x, x , , 12 , 4, , cot x , 1, , 2, , 7 cot 1 x 10 0, lie in the interval., , a) ,cot 5 cot 4,cot 2 , , 2, , cot 5, cot 4 , c) , cot 5 cot 2, , d) cot 2, , b), ,
[email protected], https://t.me/mcpmathematicskar_1986, Phone number-8105418762 / 701988190, , MCP-MATHEMATICS
Page 19 : INVERSE TRIGONOMETRIC FUNCTIONS, , [JEE-MAIN-11/1/2019-SHIFT-II], [One option correct type-4M], , , , Solution:(d) cot 1 x, , , , , , , , 2, , 7 cot 1 x 10 0,, , , , cot 1 x 5 cot 1 x 2 0, , 10, , cot 1 x , 2 5, , , 5, cot 1 x 0, 2 cot 1 x 0, , x cot 2, , , 2, , 5, , y, , where, 2, y, 1 x 1, 2 y 2, x , then for all, 2, 2, 2, x, y, 4 x 4 xy cos y is equal to:, , 7. If cos 1 x cos 1 , , 2, a) 4sin , 2, b) 2sin , c) 4sin 2 2x 2 y 2, , 2, 2 2, d) 4 cos 2x y, , [JEE-MAIN-10/4/2019-SHIFT-II], [One option correct type-4M], , y, ,, 2, , Solution:(a) cos 1 x cos 1 , , , , cos 1 cos 1 cos 1 1 2 1 2, , , if 1 x, y 1 & x y, , , , , , , xy, y2 , cos 1 , 1 x2 1 , , 2, , 4, , , 1 x2 4 y 2, xy, , , cos , 2, 2, , xy 1 x2 4 y 2 2cos , 1 x2 4 y 2 2cos xy, Squaring on both sides, we get, , , , , , , , 1 x2 4 y 2 4cos2 x2 y 2 4 xy cos , 4 y 4 x x 2 y 2 4cos 2 x 2 y 2 4 xy cos , 2, , 2, , , , 4 x2 4 xy cos y 2 4 1 cos2 , , , , 4 x 4 xy cos y 4sin , 2, , CHETHAN M G, , 2, , 2, ,
[email protected], Phone number-8105418762 / 7019881906, , 19