Page 2 :
@ G3), ©(-53), , oS), (0,0), , © (-5,2) @ (0,0), , , , 10., , The centroid of the AABC, where A = (2, 3),, B=(8, 10) and C=(5, 5) is:, , (a) G, 6) (b) (6, 5), , (© ©, 6) (d) (45, 18), , 10. Bryst ABC ot dae, vet A = (2, 3),, B=(8, 10) iv C=(5,5)®, (a) G, 6) (b) (6, 5), (c) 6, 6) (d) (15, 18), , , , 11., , The circumcentre of the triangle with vertices, (0, 30), (4, 0) and (30, 0) is :, , (a) (10, 10) (b) (10, 12), , (c) (12, 12) (d) (47, 17), , 41. af (0, 30), (4, 0) atx (80, 0) aa Baw a, Raa: &:, , (a) (10, 10), (c) (12, 12), , (b) (10, 12), (d) (17, 17), , , , , , , , 12. The circumcentre of the triangle-formed:by the | 12. weaisit y = x, y = 2x sit y = 3x + 4, arr fafa fryst, lines y = x, y= 2x and y=3x.+ 4, is : or UR, (a) (6, 8) (b).(6, ~8) (a) , 8) (b) 6, - 8), OG, 4) @) C3,—4 ()G, 4) (d) 3, - 4), , 13. Circumcentre of triangle whose vertices are (0, | 13. sftsi (0, 0), (3) 0) six (0, 4) aret Bryst ar TRG, 0), (3, 0) and (0; 4) is: erm, @ (2,2) (25) @(.2) (>) (2.3), (c) (0, 0) {d) Nofie of these (c) (0, 0) (d) None of these, , 14. The coordinates of the orthocentre of the triangle, , formed by (0, 0), (8, 0) and (4, 6) is :, , (a)(40) (6) (6,3) (©) (6,0) ~~ (d) None, , 14, (0,0), (8, 0) ate (4, 6) 2 aa Ba S ora, Préene sit @rfsry |, , (a)4,0) (6) (6,3) (6,0) (d) None, , , , . The vertices P, Q and R of a triangle are (2, 1),, , (5, 2) and (3, 4), respectively. Then, the, circumcentre is :, , @ (2,-3Je (22), oC eo?, , 15. Bry & eit P,Q sie R war (2, 1),, (5, 2) afte (3, 4), & at Ree eo, , (-2.3), ay), 404,, , , , 16., , The circumcentre of a triangle formed by the, lines xy + 2x + 2y+ 4=Oandx+y+2=0Ois:, @GC1-) (b) (0, - 1), , OGD @ G1, 0), , @ (3.3), 16. tarsi xy + 2x + 2y+4=O8R xt+y+2=O8nr, fifia Bepst oT was SPT:, cer 1, ~ 1) (b) (0, - 1), (dG, 1) (d) G1, 0), , , , 17., , If O (0, 0), P (3, 4), Q (6, 0) be the vertices of, the AOPQ. The point R inside AOPQ is such, that the triangles OPR, PQR and OQR are of, equal area. Then, the coordinates of R are :, , ota) oe), 0G) we), , 47, ae O (0, 0), P(, 4), Q(6, 0) fra AOPQ. &, et 81 AOPO @ srax ve fag R se gor Rea &, fe fect OPR, POR sig OQR@ save war @ a, frq Re Meare em], , (3.2), , 3), © (3.3) (3.5), , , , , , 18., , Let ABC be a triangle, two of whose vertices are, (15, 0) and (0, 10). If the orthocentre is (6, 9),, then the third vertex is :, , (a) (15, 10) (b) (10, — 15), , (c) (0, 0) (d) None of these, , , , 18. amt AABC org Brps 8, forad et eff (15, 0) cer, (0, 10). | afe (6, 9), Bays oT cade Se aT SAET, dient git eh, , (a) (15, 10), (c) (, 0), , (b) (10, — 15), (d) None of these
Page 4 :
Admission Open, For session, , 2022-23 4, t % 9936960412, 9473850909 Z__~, , 9 NEAR CHEHARA TALAB, CHEHARA, JIGANA, MIRZAPUR, , , , , , Answer, , 1.(c¢) 2. (b) 3. (b) 4. (b) 5. (a), 6. (a) 7. (b) 8. (a) 9. (d) 10. (a), 11.(d) 12.(b) 13.(a) 14.4) 15.(d), 16.(a) 17.(c) 18.(b) 19.(c) 20.(c), 21.(c) 22.(a) 23.(c) 24.(a) 25. (a), , , , GURUKUL, , “CLASSES, , , , ESTA OI