Page 1 :
CASE New Pattern nematics Xi1 (Term 1) am eS, CBSE Net eS ——, sin7?x 4, rt rs2 ya ——, if # ,, 2. rfei=|5 then the values 25, Function f(x *, i » (aix-k 2>8 % if x0, of a for which f is continuous for all x continuous at x = 0., Last fa) True (b) False, (a) tand-2 (b) land 2 {c} Cant say (d) Partially true, ) -tand2 -4, 0SxS2, {c) -tand2 4 eve, , 21. All the points of discontinuity of the, function {defined by, 3 ifOsxesl, fls)={4, fl<x<3 are, 5 f3sx510, la) h3 ib) 3.10, tc} 1.5.10 () 0.1.3, , 22. The relationship between @ and 4, so, , that the function f defined by, , ax+h ifxs3 ;, (x) is continuous at, , “TV te + 3 if x>3, x=Ais, ; 2 3, labo=b+— [bho-b=—, te) ab =e (d) 0+0 =2, 3, , 23. ‘The function,, 1/2+x, fOSx<1/2, Six) 1, if x=1/2, 3/2+¢x, ifl/2<xs1, , (a) continuous, , (b} discontinuous, , (c) A(x) does not exist, (d} None of the above, , 24. The value of ais ....., , ax+5, ifx<2, S(s)= eel. 58 is continuous at, , , , ++, $0 that, , x=2, (a) -2 (b} 2, (clo (a) -3, , , , 26. Let f)=Forye 2exs9, continuous at x = 2 then the value of f, (b) Fatse, , a) True, {d) Partially true, , 5) Can't say, 27. Whenever we define derivative at a, point x = ¢, then at that point, , flc+h)- fle, , , , , , , , , , , i h, , {a} does not exist, , (b) exists, , {c) functe snot defined, , , , (d) None of the above, 28. The set of points where the function f, , given by f(x) = |2x—llis differentiable,, , is, (\, , (al R io) R, , ‘ (3), , (ch (0, ) (d] None of these, , . 1 ;, 29, Let f(x) = (x -—1) aay fx el, 0 sif x=1, , Then, which of the following is true?, , (a) fis differentiable at x=1but not at x=0, , (b) fis neither differentiable at x =O nor at x=1, ic} fis differentiable at x=Qand at x=1, , \d) f is differentiable at x=Obut not at x=1, , 30. If f(x) =|sin x4, then, (a) fis everywhere differentiable, {b) fis everywhere continuous but not, , differentiable at x=nn ,n eZ, (c} fis everywhere continuous but not, , differentiable at x=(2n+~.neZ, é, , (¢) None of the above, , , , **
Page 3 :
——e, , 86, , 31. The function f(x) = «”! is, , (a) differentiable at x=0, (b) cifferentiable everywhere, (c) differentiable everywhere except al x=0, , id) None of the above, , 32. If f(x) =|cosx - sin x}, anen "(i, , equal to ......... - :, lalv3+0 RD, es {d) None of these, Sow, x? sin(I/x), x #0,, . . is, 33. Function f(x) | 0, ved, differentiable at x = 0., {a) True {b) False, (c) Can't say (a) Partially true, , 34. Ify = tan“! x +cot x + sec" x, , +cosec"'x, then 2 is equal to, , ¥-1, ab (b) x, {c) 0 (d)7, 35. If y =(2+ 3 sin x) (3 — 2cos x), then the, value of 2 is, , (a) 4sinx-9cosx + 6cos2x, (b) 4sinx + 9cosx + Bcos2x, (c) 4sinx -9cos x -6cos2x, (d) 4sinx + 9cosx-6cos2x 36. The differential coefficient of, sin (cos(x*)) w.r.t, xis, (a) -2xsin) cos(cos x°), (b) 2xsin(x’) cos(x?), (c) 2xsinb2, ) cos(7) cosx, (d) None of the above, , 37. y= (e43 + sthen — is, 2x? +4 dx, equal to, , (alee 2x, 2]ix+2 (2 +4)?, , , , (Term D |, , ', 2, , CBSE New Pattern ~ Mathematics XII, , 2x, , 3, 23x42 ; tat +4)?, 3 6 ‘ae, (Cl Fie? (+, (d) None of the above, , 38. If y= ysinx + y, then 4 is equal to, , , , cosx (by SoS, fa) Dy) j-2y, sinx ; {d) Sink, Olay. 2y-1, , 39. If y + sin y = cos, then © is equal to, , sinx, , , , (a) - ~.y=l2n+ In, l+ cosy, (b) So yx(2n+ tn, 1+cosy, {c) - =. y#(2n+ tm, l+cosy, , {d) None of the above, 40. The differentiation of cos~!(5x? + 4), , , , , , w.r.t. x is, (a) 1-62 +47 (b) -10x 1 (62 + 4?, (c) een F {d) None of these af 2x dy, 41. Ify=sin" then — i, y=sin (7}. en 3, equal to, BY 2, " 1+ x7 = 147, 2 . -2, (c) —, or i =, , 42. Ify = sec tan x, then © is equal to, , (b) xyyfits x4), , (0) xy 11+ x2), , (a) xy/(1+ x), (c) y/yi+ x), 43. If y = log x*, then the value 2 is, , (a) x* (1+ logx), (c) log ©, x, , (b) log (ex), (d) tog] *, o(*), , ,