Page 1 :
tan B=t, 3.1, Trigonometric functions of sum and, difference, 1., The value of cos, +x+cos, is, (A) V2 sin x, (C) V2 cosx, (Kerala (Engg.) 2017], (B) 2 sin x, (D) 2 co, cosr, The value of cos 15°-sin 15° is equal to, [MNR 1975; MP PET 1994, 2002|, 2., (A) Je, (B), 2, (C), (D) 0, 3. If sin 0=, and, 3, 3n, cos o, then sin (0+ ), will be, (Orissa JEE 2004], -56, -56, (A), (B), 61, 65, (C), 65, (D) -56, 37, 15, If<a<n, n <B<, ;sin a =, and, 17, 12, then the value of sin (B-a) is, (Roorkee 2000], -171, -21, (A), (B), 221, 221, 21, (C), 171, (D), 221, 221, If tan (A + B) =p, tan (A B) = q, then the, value of tan 2A in terms of p and q is, 1, 5., [MP PET 1995, 2002], P-4, (B), I+ pq, p+q, (A), p-9, 1+ pq, (D), p+4, 1-pq, (C), 1-p, -18
Page 2 :
Chapter 03: Trigonometric Functions, of Compound Angles, 12., If cos (a + B)-, and a, B, 13, A positive acute angle is divided into two, 6., sin(a - B) =, parts whose tangents are, and, Then the, lie between 0 and, then tan 2a, angle is, |WB JEE 2009], IT 1979; EAMCET 2002; AIEEE 2010], (A), 4., (B), 5., 16, (A), 63, 56, (B), 33, (C), 3., (D), 28, (C), 33, (D) None of these, 13. If cosP=, and cos Q=, 13, where P and Q, 14, If cos(A -B)= and tan A tan B-2, then, 5., both are acute angles, then the value of P-Q, is, (Karnataka CET 2002], (A) 30° (B) 60° (C) 45° (D) 75°, [MP PET 1997|, (A) cos A cos B=, 5, 3, then B-a lies in, If sin a =, and sin B=, V5, 14., (B) sin A sin B =., the interval, (Roorkee 1998Ị, n3n, (B), 2 4, (C) cos A cos B, (A), 0,, (D) sin A sin B =-., (C), (0, ), (D), 5m, If sin 0 - 3 sin(e+ 2a), then the value of, tan(0+ a) +2 tan a is, 8., cos(e, +e,), cos (0, -0,), 15., If tan 0,-k cot 0,, then, [Kerala (Engg.) 2011], (B) 2, (TS EAM CET 2017], (A) 3, (C) -1, (D) 0, 1+k, 1-k, (A), (B), 1+k, nsina cos a, 9., If tan B, then tan (a - B) is, k+1, k-1, 1-nsin a, (C), (D), k-1, k+1, equal to, [ВСЕСЕ 2014], (A) n tan a, (B) (1- n) tan a, cos17° + sin 17°, 16., [MP PET 1998], tan a, cos17°-sin17o, (C) (1+n) tan a, (D), (A) tan 62°, (C) tan 54°, (B) tan 56°, (D) tan 73°, 10. If y (1 + tan A) (1, A-B=, then (y+1)" is equal to, - tan B), where, %3D, cos 9°+ sin 9°, 17., cos 9°- sin 9°, [EAMCET 1992; Kerala (Engg.) 2005], (A) tan 54°, (C) tan 18°, J & K 2005], (B) 4, (D) 81, (B) tan 36°, (D) tan 9°, (A) 9, (C) 27, sin a- cos a, and 0 # t, then the value of, 4, 18., If tan 0 =, then sin a + cos a and, 11., If, sin a + cosa, |WB JEE 1971]|, sin a - cos a is equal to, (A) 2 cos 0, V2 sin e, (B) - 2 sin 0, – V2 cos 0, (C) 2 sin 0, 2 sin 0, (D) 2 cos e,, cot, +0 cot, -0 is, 4., (A) 0, (C) 1, (Kerala (Engg.) 2011], (B) -1, (D) -2, 2 cos e, 31
Page 3 :
Std. XI: Triumph Maths, 19., The value of cos 45°-sin 15° is, (Karnataka CET 2017|, (A), 21, (B), 4, V3+1, (C), V3-1, (D), 2/2, 2/2, 20., cos, sin, JEAMCET 2001], (A) cos 20, (B) 0, (C), cos 20, (D), 21. The maximum value of, sinx+, + cos, in the interval, is attained at, [IIT 1992], (A) x=., (B) x=, 12, (C) x, (D) x=, 3.2 Trigonometric functions of allied, angles, 22., sin 75° =, [MNR 1979], 2-3, (A), V3 +1, (B), 2/2, V3-1, (C), -2/2, 3-1, (D), 2/2, 23. sin 765° is equal to, [Kerala (Engg.) 2017], (B) 0, (A) 1, (C), (D), V2, 24. tan Osin, +e cos, (A) I, (C) cos e, [EAMCET 1981], (B) 0, (D) sin' e, 25. cot (45° + 0) cot (45° – 0) =, [MNR 1973], (A) -1 (B) 0 (C) 1 (D) 0, 112, +.
Page 4 :
26., tan 75°- cot 75°, %3D, IMNR 1982; Pb. CET 1990, 2000], (A) 2/3, (C) 2-3, (B) 2+ 3, (D) -2/3, 27. tan 70° is equal to, [DCE 2002], (A), (B) 2 tan 20° + tan 50°, (C), (D) 2 tan 20° + 2 tan 50°, tan 20° + tan 50°, tan 20° + 2 tan 50°, 28. sec 50° + tan 50° is equal to, [DCE 2002], (A) tan 20° + tan 50°, (B) 2 tan 20° + tan 50°, (C) tan 20° +2 tan 50°, (D) 2 tan 20° + 2 tan 50°, If 2 sec 2a = tan B + cot B, then one of the, values of a + ß is, 29., [Karnataka CET 2000], TC, (B), (A), 4., (C) T, (D) 2n, C, %3D, 30. sin (T + O) sin (r – 0) cosec² 0 =, (A) 1, (C) sin 0, [EAMCET 1980], (B) - 1, (D) – sin 0