Question 1 :
If in two triangles $\Delta ABC$ and $\Delta PQR$, $AB = QR, BC = PR$ and $CA = PQ,$ then :<br/>
Question 2 :
State true or false:<br/>In parallelogram $ ABCD $.$ E $ and $ F $ are mid-points of the sides $ AB $ and $ CD $ respectively. The line segments $ AF $ and $ BF $ meet the line segments $ ED $ and  $ EC $ at points $ G $ and $ H $ respectively, then$ GEHF $  is a parallelogram. 
Question 3 :
It is given that $\triangle ABC\cong \triangle FDE$ and $AB=\,5cm$, $\angle B={ 40 }^{ 0 }$ and $\angle A={ 80 }^{ 0 }$. Then which of the following is true?
Question 4 :
If a line through one vertex of a triangle divides the opposite sides in the ratio of other two sides, then the line bisects the angle at the vertex.<br/><br/>
Question 5 :
If in two triangles $PQR$ and $DEF$, $PR=\,EF$, $QR=\,DE$ and $PQ=\,FD$, then  $\triangle PQR\cong$ $\triangle$ ___.
Question 6 :
In $\triangle ABC$ and $\triangle DEF$, $AB = FD$ and $\angle A = \angle D.$ The two triangles will be congruent by $SAS$ axiom, if:<br/>
Question 7 :
For $\displaystyle \Delta ABC$ and $\displaystyle \Delta PQR$, $AB=PQ, AC=PR,$ and $\displaystyle \angle A=\angle P,$ then:
Question 8 :
If the diagonal BD of a quadrilateral ABCD bisects both $\angle B$ and $\angle D$ then,<br/>AB$=$AD<br/><br/>
Question 9 :
The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.<br/><br/><br/><br/>
Question 10 :
For $\displaystyle \Delta ABC$ and $\displaystyle \Delta DEF$, $\displaystyle \angle B=\angle D,\angle C=\angle F$ and $BC=DF$. Therefore which of the following is correct?
Question 11 :
In $\displaystyle \Delta DEF, \angle D={ 87 }^{ o }$ and $ \angle F={ 43 }^{ o }$ . If $\displaystyle \Delta DEF\cong \Delta BAC$, then find the measure of $\displaystyle \angle A$.
Question 12 :
<p class="wysiwyg-text-align-left">By which congruency are the following pair of triangles congruent:<br/></p><p class="wysiwyg-text-align-left">In $\Delta\,ABC$ and $\Delta \,DEF$, $\angle\,B = \angle\,E = 90\,^{\circ}, AC = DF$ and $BC = EF.$</p>
Question 13 :
Which of the following condition even if satisfied, does not make the two triangles congruent?
Question 14 :
In $\bigtriangleup ABC and \bigtriangleup QRP, AB =QR,\angle B=\angle R\:and \: \angle C=\angle P.$ By A.S.A, $\triangle ABC$ and $\triangle QRP$ are similar
Question 15 :
Consider the following statements relating to the congruency of two right triangles.<br/>(1) Equality of two sides of one triangle with any two sides of the second makes the triangle congruent.<br/>(2) Equality of the hypotenuse and a side of one triangle with the hypotenuse and a side of the second respectively makes the triangle congruent.<br/>(3) Equality of the hypotenuse and an acute angle of one triangle with the hypotenuse and an angle of the second respectively makes the triangle congruent.<br/>Of these statements: