Question Text
Question 7 :
$\displaystyle 3 \dfrac { 6 }{ 10 } =  \dfrac { ? }{ 10 } $ Find $?$
Question 13 :
State 'T' for true and 'F' for false.<br>(i) Every rational number can be expressed with a positive numerator.<br>(ii) $\frac{3}{11}$ cannot be represented as a non-terminating repeating decimal.<br>(iii) If $\frac{p}{q}$ and $\frac{r}{s}$ are two terminating decimals, then $\frac{p}{q}\times\frac{r}{s}$ is also a terminating decimal.<br>(iv) If $\frac{p}{q}$ is non-terminating repeating decimal and $\frac{r}{s}$ is a terminating decimal, then ($\frac{p}{q}\div\frac{r}{s}$)is a terminating decimal.
Question 24 :
The sum of place value of digit 2 in the number $21.236$ is
Question 31 :
Evaluate the following:$ 0.8 \times \displaystyle \dfrac {\dfrac {7}{12}}{\dfrac {5}{24}} $.<br/>
Question 34 :
Write the place value of $3$ in the following decimal numbers.<br/>$90.30$place value is $\dfrac {3}{10}$
Question 38 :
$\displaystyle \dfrac{3\dfrac{1}{4}-\dfrac{4}{5}\, of\, \dfrac{5}{6}}{4\dfrac{1}{3}\div \dfrac{1}{5}-\left ( \dfrac{3}{10}+21\dfrac{1}{5} \right )}-\left ( 1\dfrac{2}{3}\, of\, 1\dfrac{1}{2} \right )$ is equal to:
Question 40 :
If arranged order  in ascending which number is in second place?<br/>$1234.456, 5623.564, 2563.965, 9856.365$
Question 43 :
Simplify: $\displaystyle\frac { \left( 8\displaystyle\frac { 1 }{ 3 } \times\displaystyle\frac { 1 }{ 5 }  \right) -\left( 2\displaystyle\frac { 1 }{ 3 } \div 3\displaystyle\frac { 1 }{ 2 }  \right)  }{ \left( \displaystyle\frac { 7 }{ 10 } \,of\, 1\displaystyle\frac { 1 }{ 4 }  \right) +1\displaystyle\frac { 1 }{ 10 } -\left(\displaystyle \frac { 2 }{ 5 } \div \displaystyle\frac { 5 }{ 6 }  \right)  } $<br/><br/>
Question 46 :
A fraction whose numerator is greater than its denominator is<u> </u> fraction.
Question 48 :
Find the value of :$\displaystyle \frac { \left( 0.0036 \right) \left( 2.8 \right)  }{ \left( 0.04 \right) \left( 0.1 \right) \left( 0.003 \right)  } $