Question 1 :
If $\displaystyle  \begin{bmatrix} 2 & 3   \\ 4 & 4   \end{bmatrix} $+$\displaystyle  \begin{bmatrix} x & 3   \\ y & 1   \end{bmatrix} $=$\displaystyle  \begin{bmatrix} 10 & 6   \\ 8 & 5   \end{bmatrix},$ then $(x,y)=$
Question 2 :
$A = \begin{bmatrix} 2 & 3& 1\\4&1&5\\3&9&7\end{bmatrix}$. Then the additive inverse of $A$ is
Question 4 :
If $A= \begin{bmatrix} 1 & 2 & 3\end{bmatrix}$, then order is
Question 5 :
If $X$ and $Y$ are the matrices of order $2 \times 2$ each and $2X - 3Y = \begin{bmatrix}-7 & 0\\ 7 & -13\end{bmatrix}$ and $3X + 2Y = \begin{bmatrix}9 & 13 \\ 4 & 13\end{bmatrix}$, then what is $Y$ equal to?
Question 6 :
A matrix having $m$ rows and $n$ columns with $m=n$ is said to be a 
Question 7 :
If $A = \begin{bmatrix}1 & -2 \\ 3 & 0 \end{bmatrix}, \space B = \begin{bmatrix}-1 & 4 \\ 2 & 3\end{bmatrix},\space C = \begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix} $, then $5A - 3B + 2C =$
Question 8 :
If matrix $A$ is of order $p\times q$ and matrix $B$ is of order $r\times s$ ,then $A-B$ will exist if
Question 9 :
If $\displaystyle A=\left [ a_{ij} \right ]_{m\times\:n}, B=\left [ b_{ij} \right ]_{m\times\:n},$ then the element $\displaystyle C_{23}$ of the matrix $C=A+B$ is 
Question 10 :
If $A= [ 1 \ 2\  3 ]$, then the set of elements of A is
Question 11 :
If $A = \begin{bmatrix} 2 & 3\\ 6 & x \end{bmatrix}, B = \begin{bmatrix} 2 & 3\\ p & 2 \end{bmatrix}$ and $A = B,$ then $p$ and $x $ are<br/>
Question 12 :
If a matrix is of order $2 \times 3$, then the number of elements in the matrix is<br>
Question 13 :
If  $\left[\begin{array}{ll}<br/>1 & 2\\<br/>3 & 4<br/>\end{array}\right] +2\mathrm{X}=\left[\begin{array}{ll}<br/>3 & 5\\<br/>5 & 9<br/>\end{array}\right],$ then $X$ is equal to.
Question 14 :
If <span>$ X $ is of order $ 2\times n $, </span><span>$ Z $ is of order $ 2 \times p $ and $n = p$,</span> then the  order of the matrix $7X - 5Z$ is
Question 16 :
If $A = \begin{bmatrix}2 & -1\\ 3 & 1\end{bmatrix}$ and $B = \begin{bmatrix}1 & 4\\ 7 & 2\end{bmatrix}$,  $3A - 2 B$ is
Question 17 :
If $\left[ \begin{matrix} a \\ 8 \end{matrix}\begin{matrix} 5 \\ b \end{matrix} \right]$ $-$ $\left[ \begin{matrix} 4 \\ 7 \end{matrix}\begin{matrix} 6 \\ 2 \end{matrix} \right]$ =$\left[ \begin{matrix} 2 \\ 1 \end{matrix}\begin{matrix} -1 \\ 5 \end{matrix} \right],$ then value of $a$ is
Question 18 :
If the number of elements in a matrix is $60$, then how many different order of matrix are possible?
Question 19 :
<div>Let $\displaystyle A=\begin{bmatrix}-1\\2\\3\end{bmatrix}$ and $\displaystyle B=\begin{bmatrix} -2 & -1 & -4 \end{bmatrix}$<br/></div><div><br/></div>If trace of matrix $AB$ is $-12$, then the value of $k$ <br/>
Question 20 :
If $A =\displaystyle \begin{bmatrix} -1 & 0 &0  \\ 0 & x & 0 \\ 0 & 0 & m \end{bmatrix}$ is a scalar matrix then $x+m=$
Question 21 :
Elements of a matrix $A$ of order $10\times10$ are defined as ${ a }_{ ij }={ w }^{ i+j }$(where $w$ is cube root of unity), then trace ($A$) of the matrix is<br>
Question 22 :
If $f(x,y) = x^2 + y^2 - 2xy, \space (x,y \in R)$ and <br/>$\quad A = \begin{bmatrix}f(x_1,y_1) & f(x_1,y_2) & f(x_1,y_3) \\ f(x_2,y_1) & f(x_2,y_2) & f(x_2,y_3) \\ f(x_3,y_1) & f(x_3,y_2) & f(x_3,y_3) \end{bmatrix}$ <br/>such that trace $(A) = 0$, then which of the following is true (only one option)
Question 24 :
Let $A=\left[\begin{matrix}2&0&7\\0&1&0\\1&-2&1\end{matrix}\right]$ and $B=\left[\begin{matrix}-x&14x&7x\\0&1&0\\x&-4x&-2x\end{matrix}\right]$ are two matrices such that $AB = (AB)^{-1}$ and $AB\ne I$ (where $I$ is an identity matrix of order $3\times3$).<br>Find the value of $Tr.\left(AB+(AB)^2+(AB)^3+...+(AB)^{100}\right)$ where $Tr.(A)$ denotes the trace of matrix $A$.
Question 25 :
How many different matrices of unequal elements can be made by taking the first 6 positive integers as elements?