Question 1 :
The pair of equations 5x – 15y = 8 and $3x-9y=\frac{24}{5}$ has __________.
Question 2 :
Meena went to a bank to withdraw Rs. 2000. She asked the cashier to give her Rs. 50 and Rs. 100 notes only. Meena got 25 notes in all. Find how many notes of Rs. 50 and Rs. 100 she received.
Question 3 :
State whether the following pair of linear equations has unique solution, no solution, or infinitely many solutions : $x – 3y – 3 = 0 ; 3x – 9y – 2 = 0$
Question 4 :
Solve the following pair of equations by reducing them to a pair of linear equations : $\frac{4}{x} + 3y = 14 ; \frac{3}{x} - 4y =23 $.
Question 5 :
The sum of the digits of a two-digit number is 9. If 27 is added to it, the digits of the number get reversed. The number is ___________.
Question 6 :
Solve the following pair of linear equations by the substitution and cross-multiplication methods : $8x + 5y = 9 ; 3x + 2y = 4$
Question 7 :
For which values of a and b does the following pair of linear equations have an infinite number of solutions? $2x + 3y = 7 ; (a – b) x + (a + b) y = 3a + b – 2$
Question 8 :
A boat goes 30 km upstream and 44 km downstream in 10 hours. In 13 hours, it can go 40 km upstream and 55 km down-stream. Determine the speed of the stream and that of the boat in still water.
Question 9 :
5 pencils and 7 pens together cost Rs. 50, whereas 7 pencils and 5 pens together cost Rs. 46. Find the cost of one pencil and that of one pen, graphically.
Question 10 :
Do the equations 4x + 3y – 1 = 5 and 12x + 9y = 15 represent a pair of coincident lines?
Question 11 :
Solve the following pair of equations by reducing them to a pair of linear equations : $\frac{2}{\sqrt{x}} + \frac{3}{\sqrt{y}} = 2 ; \frac{4}{\sqrt{x}} - \frac{9}{\sqrt{y}} = -1$.
Question 12 :
Find out whether the lines representing a pair of linear equations are consistent or inconsistent: $2x + y – 6 = 0 , 4x – 2y – 4 = 0$
Question 13 :
Solve $2x + 3y = 11$ and $2x – 4y = – 24$ and hence find the value of ‘m’ for which $y = mx + 3$.
Question 14 :
Given the linear equation 2x + 3y – 8 = 0, write another linear equation in two variables such that the geometrical representation of the pair so formed are coincident lines.
Question 15 :
Roohi travels 300 km to her home partly by train and partly by bus. She takes 4 hours if she travels 60 km by train and the remaining by bus. If she travels 100 km by train and the remaining by bus, she takes 10 minutes longer. Find the speed of the train and the bus separately.
Question 16 :
A part of monthly hostel charges is fixed and the remaining depends on the number of days one has taken food in the mess. When a student A takes food for 20 days she has to pay Rs. 1000 as hostel charges whereas a student B, who takes food for 26 days, pays Rs. 1180 as hostel charges. Find the fixed charges and the cost of food per day.
Question 17 :
A fraction becomes $\frac{9}{11}$, if 2 is added to both the numerator and the denominator.If, 3 is added to both the numerator and the denominator it becomes $\frac{5}{6}$. Find the fraction.
Question 18 :
The taxi charges in a city consist of a fixed charge together with the charge for the distance covered. For a distance of 10 km, the charge paid is Rs. 105 and for a journey of 15 km, the charge paid is Rs. 155. How much does a person have to pay for travelling a distance of 25 km?
Question 19 :
Solve the following pair of linear equations: $152x – 378y = – 74 ; –378x + 152y = – 604$
Question 20 :
Find out whether the lines representing a pair of linear equations are consistent or inconsistent: $x – y = 8 , 3x – 3y = 16$
Question 21 :
For which values of p and q, will the following pair of linear equations have infinitely many solutions? 4x + 5y = 2 and $\left(2p+7q\right)x+\left(p+8q\right)y=2q-p+1$.
Question 22 :
The ratio of incomes of two persons is 9 : 7 and the ratio of their expenditures is 4 : 3. If each of them manages to save Rs. 2000 per month, find their monthly incomes.
Question 23 :
Solve the following pair of equations by reducing them to a pair of linear equations : $\frac{1}{2x} + \frac{1}{3y} = 2 ; \frac{1}{3x} + \frac{1}{2y} = \frac{13}{6}$.
Question 24 :
An equation which can be put in the form ax + by + c = 0,where a, b and c are real numbers, and a and b are not both zero, is called a linear equation in two variables x and y. TRUE or FALSE?
Question 25 :
<img style='object-fit:contain' src='https://teachmint.storage.googleapis.com/question_assets/cbse_ncert/61b19bdc273b230584979a30.png' />
In the above fig, the lines represents ____________ lines.