Question 1 :
The minimum value of $\sec^2 \theta + \cos^2 \theta$ is -<br/>
Question 2 :
The value of $\sec^2 (\tan^{-1}3) + \text{cosec}^2 (\cot^{-1}2)$ is equal to
Question 4 :
lf two sides of a triangle are equal and the angle included by these sides is $60^{0}$, then the triangle is?<br/>
Question 7 :
The sum of integral values of $'n'$ such that equation $\sin x (2\sin x+\cos x)=n$ has at least one real solution is ?
Question 9 :
$\cos { \left( \dfrac { \pi }{ 4 } +x \right) } +\cos { \left( \dfrac { \pi }{ 4 } -x \right) } =-\sqrt { 2 } .\cos { x }$<br/>
Question 10 :
The most general solution of $tan\theta =-1 \,\,\ and \,\,\,\ cos\theta = \dfrac{1}{\sqrt{2}}$ is
Question 11 :
$\cos ^{ 2 }{ \cfrac { 3\pi }{ 5 } } +\cos ^{ 2 }{ \cfrac { 4\pi }{ 5 } } $ is equal to -
Question 13 :
If $\tan 45^{\circ} = \cot \theta$, then the value of $\theta$, in radians is
Question 16 :
The value of $\sin B \cos (90^0-B) + \cos B \sin (90^0 - B)$ is <br/>
Question 17 :
The given expression is $\displaystyle \sin { \theta } \cos { \left( { 90 }^{ o }-\theta \right) } +\cos { \theta } \sin { \left( { 90 }^{ o }-\theta \right) } +4 $ equal to :<br/>
Question 18 :
If $\tan \left( {\dfrac{\pi }{4} + x} \right) + \tan \left( {\dfrac{\pi }{4} - x} \right) = a$, then ${\tan ^2}\left( {\dfrac{\pi }{4} + x} \right) + {\tan ^2}\left( {\dfrac{\pi }{4} - x} \right) = $
Question 21 :
If P = cos $\dfrac {\pi } {20} .cos \dfrac {3\pi } {20} .cos\dfrac {7\pi } {20} . cos\dfrac{9\pi } {20} $ & Q = cos$ \dfrac{\pi } {11}. cos\dfrac{2\pi } {11} .cos\dfrac{4\pi } {11} . cos\dfrac {8\pi } {11}. cos \dfrac {16\pi } {11}, then \dfrac {P} {Q} $ is
Question 22 :
Choose the correct answer from the alternatives given :<br/>Maximum value of 24sin $\theta$ + 7cos $\theta$ is
Question 23 :
If range of $f(x)=\cos x, x\in \left(\dfrac {-\pi}{3}, \dfrac {\pi}{6}\right)$ is $(a,b)$, then
Question 26 :
The general solution of x satisfying the equation $tan 3x-1=tan 2x (1+tan 3x)$ , is
Question 27 :
If $0^{\circ} \leq \theta \leq 90^{\circ}$ and $\sqrt{2} tan \theta - sec \theta =0$, then the value of $(\sqrt{2} sin \theta + 2 tan \theta)$ is -<br>
Question 28 :
If $\sin x - \cos x = 0$, then what is the value of $\sin^{4}x + \cos^{4}x$?
Question 30 :
In which quadrant does the terminal side of the angle $420^0$ lie?<br/>
Question 32 :
If $\cos \left( {A + B} \right) = \dfrac{3}{5}$ and $\tan \,A\,\tan B = 2$, then $ \cos A\cos B $
Question 33 :
If $\tan { \theta }$ =$\dfrac{-4}{3}$ then $\sin { \theta } $ is
Question 34 :
Given that $ \displaystyle \cos 50^{\circ}18'=0.6388\ and\ \cos 50^{\circ}42'=0.6334, $ then the possible value of $ \displaystyle \cos 50^{\circ}20' $ is
Question 35 :
The value of $\cot 15^{\circ} \cot 20^{\circ} \cot 70^{\circ} \cot 75^{\circ}$ is equal to
Question 36 :
If tan A = 4 /3, tanB = 1/ 7,then A - B =
Question 37 :
The angle A of the triangle $ABC$, in which $(a+b+c)(b+c-a)=3bc$ is
Question 40 :
Express $\displaystyle \cos { { 79 }^{ o } } +\sec { { 79 }^{ o } } $ in terms of angles between $\displaystyle { 0 }^{ o }$ and $\displaystyle { 45 }^{ o }$
Question 41 :
Value of $ \displaystyle \cos 25^{\circ}\cos 20^{\circ}+\sin 25^{\circ}\sin 20^{\circ} $ is
Question 42 :
Let $x+y$ being acute and if $\sin x.\cos y+\cos x.\sin y=0$ then the value of $\sin x+\sin y=$
Question 43 :
$( \sec A + \tan A - 1 ) ( \sec A - \tan A + 1 ) =$
Question 44 :
What is the value of $\dfrac {(\cos 10^{o}+\sin 20^{o})}{(\cos 20^{o}-\sin 10^{o})}$?
Question 45 :
Find the ratio of the sides of a triangle whose interior angles are $60^o, 60 ^o\ and \ 60^o$ degrees?<br/>
Question 48 :
$\cos A.\cos \left( {{{60}^ \circ } - A} \right)\cos \left( {{{60}^ \circ } + A} \right) = $
Question 49 :
Range of the function $f$ defined by $\displaystyle f\left( x \right)=\left[ \frac { 1 }{ \sin { \left\{ x \right\} } } \right] $ (where $[.]$ and ${.}$ respectively denote the greatest integer and the fractional part functions) is